PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-3 (3)
 

Clipboard (0)
None
Journals
Authors
more »
Year of Publication
Document Types
1.  UMOD as a susceptibility gene for end-stage renal disease 
BMC Medical Genetics  2012;13:78.
Background
In recent genetic association studies, common variants including rs12917707 in the UMOD locus have shown strong evidence of association with eGFR, prevalent and incident chronic kidney disease and uromodulin urinary concentration in general population cohorts. The association of rs12917707 with end-stage renal disease (ESRD) in a recent case-control study was only nominally significant.
Methods
To investigate whether rs12917707 associates with ESRD, graft failure (GF) and urinary uromodulin levels in an independent cohort, we genotyped 1142 ESRD patients receiving a renal transplantation and 1184 kidney donors as controls. After transplantation, 1066 renal transplant recipients were followed up for GF. Urinary uromodulin concentration was measured at median [IQR] 4.2 [2.2-6.1] yrs after kidney transplantation.
Results
The rs12917707 minor allele showed association with lower risk of ESRD (OR 0.89 [0.76-1.03], p = 0.04) consistent in effect size and direction with the previous report (Böger et al, PLoS Genet 2011). Meta-analysis of these findings showed significant association of rs12917707 with ESRD (OR 0.91 [0.85-98], p = 0.008). In contrast, rs12917707 was not associated with incidence of GF. Urinary uromodulin concentration was lower in recipients-carriers of the donor rs12917707 minor allele as compared to non-carriers, again consistent with previous observations in general population cohorts.
Conclusions
Our study thus corroborates earlier evidence and independently confirms the association between UMOD and ESRD.
doi:10.1186/1471-2350-13-78
PMCID: PMC3495046  PMID: 22947327
UMOD; Uromodulin; Polymorphisms; SNP; End-stage renal disease; Kidney transplantation
2.  CUBN as a Novel Locus for End-Stage Renal Disease: Insights from Renal Transplantation 
PLoS ONE  2012;7(5):e36512.
Chronic kidney disease (CKD) is a complex disorder. As genome-wide association studies identified cubilin gene CUBN as a locus for albuminuria, and urinary protein loss is a risk factor for progressive CKD, we tested the hypothesis that common genetic variants in CUBN are associated with end-stage renal disease (ESRD) and proteinuria. First, a total of 1142 patients with ESRD, admitted for renal transplantation, and 1186 donors were genotyped for SNPs rs7918972 and rs1801239 (case-control study). The rs7918972 minor allele frequency (MAF) was higher in ESRD patients comparing to kidney donors, implicating an increased risk for ESRD (OR 1.39, p = 0.0004) in native kidneys. Second, after transplantation recipients were followed for 5.8 [3.8–9.2] years (longitudinal study) documenting ESRD in transplanted kidneys – graft failure (GF). During post-transplant follow-up 92 (9.6%) cases of death-censored GF occurred. Donor rs7918972 MAF, representing genotype of the transplanted kidney, was 16.3% in GF vs 10.7% in cases with functioning graft. Consistently, a multivariate Cox regression analysis showed that donor rs7918972 is a predictor of GF, although statistical significance was not reached (HR 1.53, p = 0.055). There was no association of recipient rs7918972 with GF. Rs1801239 was not associated with ESRD or GF. In line with an association with the outcome, donor rs7918972 was associated with elevated proteinuria levels cross-sectionally at 1 year after transplantation. Thus, we identified CUBN rs7918972 as a novel risk variant for renal function loss in two independent settings: ESRD in native kidneys and GF in transplanted kidneys.
doi:10.1371/journal.pone.0036512
PMCID: PMC3344899  PMID: 22574174
3.  Differential Expression of Proteoglycans in Tissue Remodeling and Lymphangiogenesis after Experimental Renal Transplantation in Rats 
PLoS ONE  2010;5(2):e9095.
Background
Chronic transplant dysfunction explains the majority of late renal allograft loss and is accompanied by extensive tissue remodeling leading to transplant vasculopathy, glomerulosclerosis and interstitial fibrosis. Matrix proteoglycans mediate cell-cell and cell-matrix interactions and play key roles in tissue remodeling. The aim of this study was to characterize differential heparan sulfate proteoglycan and chondroitin sulfate proteoglycan expression in transplant vasculopathy, glomerulosclerosis and interstitial fibrosis in renal allografts with chronic transplant dysfunction.
Methods
Renal allografts were transplanted in the Dark Agouti-to-Wistar Furth rat strain combination. Dark Agouti-to-Dark Agouti isografts and non-transplanted Dark Agouti kidneys served as controls. Allograft and isograft recipients were sacrificed 66 and 81 days (mean) after transplantation, respectively. Heparan sulfate proteoglycan (collXVIII, perlecan and agrin) and chondroitin sulfate proteoglycan (versican) expression, as well as CD31 and LYVE-1 (vascular and lymphatic endothelium, respectively) expression were (semi-) quantitatively analyzed using immunofluorescence.
Findings
Arteries with transplant vasculopathy and sclerotic glomeruli in allografts displayed pronounced neo-expression of collXVIII and perlecan. In contrast, in interstitial fibrosis expression of the chondroitin sulfate proteoglycan versican dominated. In the cortical tubular basement membranes in both iso- and allografts, induction of collXVIII was detected. Allografts presented extensive lymphangiogenesis (p<0.01 compared to isografts and non-transplanted controls), which was associated with induced perlecan expression underneath the lymphatic endothelium (p<0.05 and p<0.01 compared to isografts and non-transplanted controls, respectively). Both the magnitude of lymphangiogenesis and perlecan expression correlated with severity of interstitial fibrosis and impaired graft function.
Interpretation
Our results reveal that changes in the extent of expression and the type of proteoglycans being expressed are tightly associated with tissue remodeling after renal transplantation. Therefore, proteoglycans might be potential targets for clinical intervention in renal chronic transplant dysfunction.
doi:10.1371/journal.pone.0009095
PMCID: PMC2816722  PMID: 20140097

Results 1-3 (3)