PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-2 (2)
 

Clipboard (0)
None
Journals
Authors
more »
Year of Publication
Document Types
1.  Toll-Like Receptor Family Polymorphisms Are Associated with Primary Renal Diseases but Not with Renal Outcomes Following Kidney Transplantation 
PLoS ONE  2015;10(10):e0139769.
Toll-like receptors (TLRs) play a crucial role in innate- and adaptive immunity. The TLR pathways were shown to play key functional roles in experimental acute and chronic kidney injury, including the allo-immune response after experimental renal transplantation. Data about the precise impact of TLRs and their negative regulators on human renal transplant outcomes however are limited and contradictory. We studied twelve non-synonymous single nucleotide polymorphisms (SNPs) of which eleven in TLR1-8 and one in SIGIRR in a final cohort comprising 1116 matching donors and recipients. TLR3 p.Leu412Phe and SIGIRR p.Gln312Arg significantly deviated from Hardy-Weinberg equilibrium and were excluded. The frequency distribution of the minor alleles of the remaining 10 TLR variants were compared between patients with end-stage renal disease (recipients) and controls (kidney donors) in a case-control study. Secondly, the associations between the minor allele frequency of the TLR variants and delayed graft function, biopsy-proven acute rejection and death-censored graft failure after transplantation were investigated with Cox regression. Carrier frequencies of the minor alleles of TLR1 p.His305Leu (OR = 4.79, 95% CI = 2.35–9.75, P = 0.0002), TLR1 p.Asn248Ser (OR = 1.26, 95% CI = 1.07–1.47, P = 0.04) and TLR8 p.Met1Val (OR = 1.37, 95% CI = 1.14–1.64, P = 0.008) were significantly higher in patients with ESRD, with little specificity for the underlying renal disease entity (adjusted for age, gender and donor-recipient relatedness). The minor allele frequency of none of the TLR variants significantly associated with the surrogate and definite outcomes, even when multivariable models were created that could account for TLR gene redundancy. In conclusion, genetic variants in TLR genes were associated with the prevalence of ESRD but not renal transplant outcomes. Therefore, our data suggests that specific TLR signaling routes might play a role in the final common pathway of primary renal injury. A role for TLR signaling in the context of renal transplantation is probably limited.
doi:10.1371/journal.pone.0139769
PMCID: PMC4596574  PMID: 26445497
2.  CUBN as a Novel Locus for End-Stage Renal Disease: Insights from Renal Transplantation 
PLoS ONE  2012;7(5):e36512.
Chronic kidney disease (CKD) is a complex disorder. As genome-wide association studies identified cubilin gene CUBN as a locus for albuminuria, and urinary protein loss is a risk factor for progressive CKD, we tested the hypothesis that common genetic variants in CUBN are associated with end-stage renal disease (ESRD) and proteinuria. First, a total of 1142 patients with ESRD, admitted for renal transplantation, and 1186 donors were genotyped for SNPs rs7918972 and rs1801239 (case-control study). The rs7918972 minor allele frequency (MAF) was higher in ESRD patients comparing to kidney donors, implicating an increased risk for ESRD (OR 1.39, p = 0.0004) in native kidneys. Second, after transplantation recipients were followed for 5.8 [3.8–9.2] years (longitudinal study) documenting ESRD in transplanted kidneys – graft failure (GF). During post-transplant follow-up 92 (9.6%) cases of death-censored GF occurred. Donor rs7918972 MAF, representing genotype of the transplanted kidney, was 16.3% in GF vs 10.7% in cases with functioning graft. Consistently, a multivariate Cox regression analysis showed that donor rs7918972 is a predictor of GF, although statistical significance was not reached (HR 1.53, p = 0.055). There was no association of recipient rs7918972 with GF. Rs1801239 was not associated with ESRD or GF. In line with an association with the outcome, donor rs7918972 was associated with elevated proteinuria levels cross-sectionally at 1 year after transplantation. Thus, we identified CUBN rs7918972 as a novel risk variant for renal function loss in two independent settings: ESRD in native kidneys and GF in transplanted kidneys.
doi:10.1371/journal.pone.0036512
PMCID: PMC3344899  PMID: 22574174

Results 1-2 (2)