Search tips
Search criteria

Results 1-15 (15)

Clipboard (0)
more »
Year of Publication
1.  Long non-coding RNA expression profiling in the NCI60 cancer cell line panel using high-throughput RT-qPCR 
Scientific Data  2016;3:160052.
Long non-coding RNAs (lncRNAs) form a new class of RNA molecules implicated in various aspects of protein coding gene expression regulation. To study lncRNAs in cancer, we generated expression profiles for 1707 human lncRNAs in the NCI60 cancer cell line panel using a high-throughput nanowell RT-qPCR platform. We describe how qPCR assays were designed and validated and provide processed and normalized expression data for further analysis. Data quality is demonstrated by matching the lncRNA expression profiles with phenotypic and genomic characteristics of the cancer cell lines. This data set can be integrated with publicly available omics and pharmacological data sets to uncover novel associations between lncRNA expression and mRNA expression, miRNA expression, DNA copy number, protein coding gene mutation status or drug response
PMCID: PMC4932877  PMID: 27377824
Long non-coding RNAs; Reverse transcription polymerase chain reaction; Cancer genomics; High-throughput screening
2.  Removal of between-run variation in a multi-plate qPCR experiment 
Quantitative PCR (qPCR) is the method of choice in gene expression analysis. However, the number of groups or treatments, target genes and technical replicates quickly exceeds the capacity of a single run on a qPCR machine and the measurements have to be spread over more than 1 plate. Such multi-plate measurements often show similar proportional differences between experimental conditions, but different absolute values, even though the measurements were technically carried out with identical procedures. Removal of this between-plate variation will enhance the power of the statistical analysis on the resulting data. Inclusion and application of calibrator samples, with replicate measurements distributed over the plates, assumes a multiplicative difference between plates. However, random and technical errors in these calibrators will propagate to all samples on the plate. To avoid this effect, the systematic bias between plates can be removed with a correction factor based on all overlapping technical and biological replicates between plates. This approach removes the requirement for all calibrator samples to be measured successfully on every plate. This paper extends an already published factor correction method to the use in multi-plate qPCR experiments. The between-run correction factor is derived from the target quantities which are calculated from the quantification threshold, PCR efficiency and observed Cq value. To enable further statistical analysis in existing qPCR software packages, an efficiency-corrected Cq value is reported, based on the corrected target quantity and a PCR efficiency per target. The latter is calculated as the mean of the PCR efficiencies taking the number of reactions per amplicon per plate into account. Export to the RDML format completes an RDML-supported analysis pipeline of qPCR data ranging from raw fluorescence data, amplification curve analysis and application of reference genes to statistical analysis.
PMCID: PMC4822202  PMID: 27077038
qPCR; Between-run variation; Between-plate correction; Software; RDML; Multi-plate experiment
3.  RDML-Ninja and RDMLdb for standardized exchange of qPCR data 
BMC Bioinformatics  2015;16(1):197.
The universal qPCR data exchange file format RDML is today well accepted by the scientific community, part of the MIQE guidelines and implemented in many qPCR instruments. With the increased use of RDML new challenges emerge. The flexibility of the RDML format resulted in some implementations that did not meet the expectations of the consortium in the level of support or the use of elements.
In the current RDML version 1.2 the description of the elements was sharpened. The open source editor RDML-Ninja was released ( RDML-Ninja allows to visualize, edit and validate RDML files and thus clarifies the use of RDML elements. Furthermore RDML-Ninja serves as reference implementation for RDML and enables migration between RDML versions independent of the instrument software. The database RDMLdb will serve as an online repository for RDML files and facilitate the exchange of RDML data ( Authors can upload their RDML files and reference them in publications by the unique identifier provided by RDMLdb. The MIQE guidelines propose a rich set of information required to document each qPCR run. RDML provides the vehicle to store and maintain this information and current development aims at further integration of MIQE requirements into the RDML format.
The editor RDML-Ninja and the database RDMLdb enable scientists to evaluate and exchange qPCR data in the instrument-independent RDML format. We are confident that this infrastructure will build the foundation for standardized qPCR data exchange among scientists, research groups, and during publication.
PMCID: PMC4474546  PMID: 26087842
4.  Target enrichment using parallel nanoliter quantitative PCR amplification 
BMC Genomics  2014;15:184.
Next generation targeted resequencing is replacing Sanger sequencing at high pace in routine genetic diagnosis. The need for well validated, high quality enrichment platforms to complement the bench-top next generation sequencing devices is high.
We used the WaferGen Smartchip platform to perform highly parallelized PCR based target enrichment for a set of known cancer genes in a well characterized set of cancer cell lines from the NCI60 panel. Optimization of PCR assay design and cycling conditions resulted in a high enrichment efficiency. We provide proof of a high mutation rediscovery rate and have included technical replicates to enable SNP calling validation demonstrating the high reproducibility of our enrichment platform.
Here we present our custom developed quantitative PCR based target enrichment platform. Using highly parallel nanoliter singleplex PCR reactions makes this a flexible and efficient platform. The high mutation validation rate shows this platform’s promise as a targeted resequencing method for multi-gene routine sequencing diagnostics.
PMCID: PMC4234423  PMID: 24612714
Next generation sequencing; Target enrichment; Sequence capture; Quantitative PCR; NCI60; Mutation detection
5.  Molecular diagnostics for congenital hearing loss including 15 deafness genes using a next generation sequencing platform 
BMC Medical Genomics  2012;5:17.
Hereditary hearing loss (HL) can originate from mutations in one of many genes involved in the complex process of hearing. Identification of the genetic defects in patients is currently labor intensive and expensive. While screening with Sanger sequencing for GJB2 mutations is common, this is not the case for the other known deafness genes (> 60). Next generation sequencing technology (NGS) has the potential to be much more cost efficient. Published methods mainly use hybridization based target enrichment procedures that are time saving and efficient, but lead to loss in sensitivity. In this study we used a semi-automated PCR amplification and NGS in order to combine high sensitivity, speed and cost efficiency.
In this proof of concept study, we screened 15 autosomal recessive deafness genes in 5 patients with congenital genetic deafness. 646 specific primer pairs for all exons and most of the UTR of the 15 selected genes were designed using primerXL. Using patient specific identifiers, all amplicons were pooled and analyzed using the Roche 454 NGS technology. Three of these patients are members of families in which a region of interest has previously been characterized by linkage studies. In these, we were able to identify two new mutations in CDH23 and OTOF. For another patient, the etiology of deafness was unclear, and no causal mutation was found. In a fifth patient, included as a positive control, we could confirm a known mutation in TMC1.
We have developed an assay that holds great promise as a tool for screening patients with familial autosomal recessive nonsyndromal hearing loss (ARNSHL). For the first time, an efficient, reliable and cost effective genetic test, based on PCR enrichment, for newborns with undiagnosed deafness is available.
PMCID: PMC3443074  PMID: 22607986
Deafness; Next generation sequencing; PCR based enrichment; Genetic diagnostics
6.  Practical Tools to Implement Massive Parallel Pyrosequencing of PCR Products in Next Generation Molecular Diagnostics 
PLoS ONE  2011;6(9):e25531.
Despite improvements in terms of sequence quality and price per basepair, Sanger sequencing remains restricted to screening of individual disease genes. The development of massively parallel sequencing (MPS) technologies heralded an era in which molecular diagnostics for multigenic disorders becomes reality. Here, we outline different PCR amplification based strategies for the screening of a multitude of genes in a patient cohort. We performed a thorough evaluation in terms of set-up, coverage and sequencing variants on the data of 10 GS-FLX experiments (over 200 patients). Crucially, we determined the actual coverage that is required for reliable diagnostic results using MPS, and provide a tool to calculate the number of patients that can be screened in a single run. Finally, we provide an overview of factors contributing to false negative or false positive mutation calls and suggest ways to maximize sensitivity and specificity, both important in a routine setting. By describing practical strategies for screening of multigenic disorders in a multitude of samples and providing answers to questions about minimum required coverage, the number of patients that can be screened in a single run and the factors that may affect sensitivity and specificity we hope to facilitate the implementation of MPS technology in molecular diagnostics.
PMCID: PMC3184136  PMID: 21980484
7.  Outcome Prediction of Children with Neuroblastoma using a Multigene Expression Signature, a Retrospective SIOPEN/COG/GPOH Study 
The lancet oncology  2009;10(7):663-671.
More accurate prognostic assessment of patients with neuroblastoma is required to improve the choice of risk-related therapy. The aim of this study is to develop and validate a gene expression signature for improved outcome prediction.
Fifty-nine genes were carefully selected based on an innovative data-mining strategy and profiled in the largest neuroblastoma patient series (n=579) to date using RT-qPCR starting from only 20 ng of RNA. A multigene expression signature was built using 30 training samples, tested on 313 test samples and subsequently validated in a blind study on an independent set of 236 additional tumours.
The signature accurately classifies patients with respect to overall and progression-free survival (p<0·0001). The signature has a performance, sensitivity, and specificity of 85·4% (95%CI: 77·7–93·2), 84·4% (95%CI: 66·5–94·1), and 86·5% (95%CI: 81·1–90·6), respectively to predict patient outcome. Multivariate analysis indicates that the signature is a significant independent predictor after controlling for currently used riskfactors. Patients with high molecular risk have a higher risk to die from disease and for relapse/progression than patients with low molecular risk (odds ratio of 19·32 (95%CI: 6·50–57·43) and 3·96 (95%CI: 1·97–7·97) for OS and PFS, respectively). Patients with increased risk for adverse outcome can also be identified within the current treatment groups demonstrating the potential of this signature for improved clinical management. These results were confirmed in the validation study in which the signature was also independently statistically significant in a model adjusted for MYCN status, age, INSS stage, ploidy, INPC grade of differentiation, and MKI. The high patient/gene ratio (579/59) underlies the observed statistical power and robustness.
A 59-gene expression signature predicts outcome of neuroblastoma patients with high accuracy. The signature is an independent risk predictor, identifying patients with increased risk in the current clinical risk groups. The applied method and signature is suitable for routine lab testing and ready for evaluation in prospective studies.
The Belgian Foundation Against Cancer, found of public interest (project SCIE2006-25), the Children Cancer Fund Ghent, the Belgian Society of Paediatric Haematology and Oncology, the Belgian Kid’s Fund and the Fondation Nuovo-Soldati (JV), the Fund for Scientific Research Flanders (KDP, JH), the Fund for Scientific Research Flanders (grant number: G•0198•08), the Institute for the Promotion of Innovation by Science and Technology in Flanders, Strategisch basisonderzoek (IWT-SBO 60848), the Fondation Fournier Majoie pour l’Innovation, the Instituto Carlos III,RD 06/0020/0102 Spain, the Italian Neuroblastoma Foundation, the European Community under the FP6 (project: STREP: EET-pipeline, number: 037260), and the Belgian program of Interuniversity Poles of Attraction, initiated by the Belgian State, Prime Minister's Office, Science Policy Programming.
PMCID: PMC3045079  PMID: 19515614
8.  Measurable impact of RNA quality on gene expression results from quantitative PCR 
Nucleic Acids Research  2011;39(9):e63.
Compromised RNA quality is suggested to lead to unreliable results in gene expression studies. Therefore, assessment of RNA integrity and purity is deemed essential prior to including samples in the analytical pipeline. This may be of particular importance when diagnostic, prognostic or therapeutic conclusions depend on such analyses. In this study, the comparative value of six RNA quality parameters was determined using a large panel of 740 primary tumour samples for which real-time quantitative PCR gene expression results were available. The tested parameters comprise of microfluidic capillary electrophoresis based 18S/28S rRNA ratio and RNA Quality Index value, HPRT1 5′–3′ difference in quantification cycle (Cq) and HPRT1 3′ Cq value based on a 5′/3′ ratio mRNA integrity assay, the Cq value of expressed Alu repeat sequences and a normalization factor based on the mean expression level of four reference genes. Upon establishment of an innovative analytical framework to assess impact of RNA quality, we observed a measurable impact of RNA quality on the variation of the reference genes, on the significance of differential expression of prognostic marker genes between two cancer patient risk groups, and on risk classification performance using a multigene signature. This study forms the basis for further rational assessment of reverse transcription quantitative PCR based results in relation to RNA quality.
PMCID: PMC3089491  PMID: 21317187
9.  Meeting Report from the Second “Minimum Information for Biological and Biomedical Investigations” (MIBBI) workshop 
Standards in Genomic Sciences  2010;3(3):259-266.
This report summarizes the proceedings of the second workshop of the ‘Minimum Information for Biological and Biomedical Investigations’ (MIBBI) consortium held on Dec 1-2, 2010 in Rüdesheim, Germany through the sponsorship of the Beilstein-Institute. MIBBI is an umbrella organization uniting communities developing Minimum Information (MI) checklists to standardize the description of data sets, the workflows by which they were generated and the scientific context for the work. This workshop brought together representatives of more than twenty communities to present the status of their MI checklists and plans for future development. Shared challenges and solutions were identified and the role of MIBBI in MI checklist development was discussed. The meeting featured some thirty presentations, wide-ranging discussions and breakout groups. The top outcomes of the two-day workshop as defined by the participants were: 1) the chance to share best practices and to identify areas of synergy; 2) defining a series of tasks for updating the MIBBI Portal; 3) reemphasizing the need to maintain independent MI checklists for various communities while leveraging common terms and workflow elements contained in multiple checklists; and 4) revision of the concept of the MIBBI Foundry to focus on the creation of a core set of MIBBI modules intended for reuse by individual MI checklist projects while maintaining the integrity of each MI project. Further information about MIBBI and its range of activities can be found at
PMCID: PMC3035314  PMID: 21304730
10.  Analysing 454 amplicon resequencing experiments using the modular and database oriented Variant Identification Pipeline 
BMC Bioinformatics  2010;11:269.
Next-generation amplicon sequencing enables high-throughput genetic diagnostics, sequencing multiple genes in several patients together in one sequencing run. Currently, no open-source out-of-the-box software solution exists that reliably reports detected genetic variations and that can be used to improve future sequencing effectiveness by analyzing the PCR reactions.
We developed an integrated database oriented software pipeline for analysis of 454/Roche GS-FLX amplicon resequencing experiments using Perl and a relational database. The pipeline enables variation detection, variation detection validation, and advanced data analysis, which provides information that can be used to optimize PCR efficiency using traditional means. The modular approach enables customization of the pipeline where needed and allows researchers to adopt their analysis pipeline to their experiments. Clear documentation and training data is available to test and validate the pipeline prior to using it on real sequencing data.
We designed an open-source database oriented pipeline that enables advanced analysis of 454/Roche GS-FLX amplicon resequencing experiments using SQL-statements. This modular database approach allows easy coupling with other pipeline modules such as variant interpretation or a LIMS system. There is also a set of standard reporting scripts available.
PMCID: PMC2880033  PMID: 20487544
11.  Osteopoikilosis, short stature and mental retardation as key features of a new microdeletion syndrome on 12q14 
Journal of Medical Genetics  2007;44(4):264-268.
This report presents the detection of a heterozygous deletion at chromosome 12q14 in three unrelated patients with a similar phenotype consisting of mild mental retardation, failure to thrive in infancy, proportionate short stature and osteopoikilosis as the most characteristic features. In each case, this interstitial deletion was found using molecular karyotyping. The deletion occurred as a de novo event and varied between 3.44 and 6 megabases (Mb) in size with a 3.44 Mb common deleted region. The deleted interval was not flanked by low‐copy repeats or segmental duplications. It contains 13 RefSeq genes, including LEMD3, which was previously shown to be the causal gene for osteopoikilosis. The observation of osteopoikilosis lesions should facilitate recognition of this new microdeletion syndrome among children with failure to thrive, short stature and learning disabilities.
PMCID: PMC2598049  PMID: 17220210
osteopoikilosis; short stature; mental retardation;  HMGA2 ;  GRIP1
12.  ZnT3 mRNA levels are reduced in Alzheimer's disease post-mortem brain 
ZnT3 is a membrane Zn2+ transporter that is responsible for concentrating Zn2+ into neuronal presynaptic vesicles. Zn2+ homeostasis in the brain is relevant to Alzheimer's disease (AD) because Zn2+ released during neurotransmission may bind to Aβ peptides, accelerating the assembly of Aβ into oligomers which have been shown to impair synaptic function.
We quantified ZnT3 mRNA levels in Braak-staged human post mortem (pm) brain tissue from medial temporal gyrus, superior occipital gyrus, superior parietal gyrus, superior frontal gyrus and cerebellum from individuals with AD (n = 28), and matched controls (n = 5) using quantitative real-time PCR. ZnT3 mRNA levels were significantly decreased in all four cortical regions examined in the AD patients, to 45-60% of control levels. This reduction was already apparent at Braak stage 4 in most cortical regions examined. Quantification of neuronal and glial-specific markers in the same samples (neuron-specific enolase, NSE; and glial fibrillary acidic protein, GFAP) indicated that loss of cortical ZnT3 expression was more pronounced, and occurred prior to, significant loss of NSE expression in the tissue. Significant increases in cortical GFAP expression were apparent as the disease progressed. No gene expression changes were observed in the cerebellum, which is relatively spared of AD neuropathology.
This first study to quantify ZnT3 mRNA levels in human pm brain tissue from individuals with AD and controls has revealed a significant loss of ZnT3 expression in cortical regions, suggesting that neuronal cells in particular show reduced expression of ZnT3 mRNA in the disease. This suggests that altered neuronal Zn2+ handling may be an early event in AD pathogenesis.
PMCID: PMC2806356  PMID: 20030848
13.  External oligonucleotide standards enable cross laboratory comparison and exchange of real-time quantitative PCR data 
Nucleic Acids Research  2009;37(21):e138.
The quantitative polymerase chain reaction (qPCR) is widely utilized for gene expression analysis. However, the lack of robust strategies for cross laboratory data comparison hinders the ability to collaborate or perform large multicentre studies conducted at different sites. In this study we introduced and validated a workflow that employs universally applicable, quantifiable external oligonucleotide standards to address this question. Using the proposed standards and data-analysis procedure, we obtained a perfect concordance between expression values from eight different genes in 366 patient samples measured on three different qPCR instruments and matching software, reagents, plates and seals, demonstrating the power of this strategy to detect and correct inter-run variation and to enable exchange of data between different laboratories, even when not using the same qPCR platform.
PMCID: PMC2790878  PMID: 19734345
14.  RDML: structured language and reporting guidelines for real-time quantitative PCR data 
Nucleic Acids Research  2009;37(7):2065-2069.
The XML-based Real-Time PCR Data Markup Language (RDML) has been developed by the RDML consortium ( to enable straightforward exchange of qPCR data and related information between qPCR instruments and third party data analysis software, between colleagues and collaborators and between experimenters and journals or public repositories. We here also propose data related guidelines as a subset of the Minimum Information for Publication of Quantitative Real-Time PCR Experiments (MIQE) to guarantee inclusion of key data information when reporting experimental results.
PMCID: PMC2673419  PMID: 19223324
15.  qBase relative quantification framework and software for management and automated analysis of real-time quantitative PCR data 
Genome Biology  2007;8(2):R19.
qBase, a free program for the management and automated analysis of qPCR data, is described
Although quantitative PCR (qPCR) is becoming the method of choice for expression profiling of selected genes, accurate and straightforward processing of the raw measurements remains a major hurdle. Here we outline advanced and universally applicable models for relative quantification and inter-run calibration with proper error propagation along the entire calculation track. These models and algorithms are implemented in qBase, a free program for the management and automated analysis of qPCR data.
PMCID: PMC1852402  PMID: 17291332

Results 1-15 (15)