Search tips
Search criteria

Results 1-5 (5)

Clipboard (0)
more »
Year of Publication
Document Types
1.  Has variation in length of stay in acute hospitals decreased? Analysing trends in the variation in LOS between and within Dutch hospitals 
We aimed to get better insight into the development of the variation in length of stay (LOS) between and within hospitals over time, in order to assess the room for efficiency improvement in hospital care.
Using Dutch national individual patient-level hospital admission data, we studied LOS for patients in nine groups of diagnoses and procedures between 1995 and 2010. We fitted linear mixed effects models to the log-transformed LOS to disentangle within and between hospital variation and to evaluate trends, adjusted for case-mix.
We found substantial differences between diagnoses and procedures in LOS variation and development over time, supporting our disease-specific approach. For none of the diagnoses, relative variance decreased on the log scale, suggesting room for further LOS reduction. Except for two procedures in the same specialty, LOS of individual hospitals did not correlate between diagnoses/procedures, indicating the absence of a hospital wide policy. We found within-hospital variance to be many times greater than between-hospital variance. This resulted in overlapping confidence intervals across most hospitals for individual hospitals’ performances in terms of LOS.
The results suggest room for efficiency improvement implying lower costs per patient treated. It further implies a possibility to raise the number of patients treated using the same capacity or to downsize the capacity. Furthermore, policymakers and health care purchasers should take into account statistical uncertainty when benchmarking LOS between hospitals and identifying inefficient hospitals.
Electronic supplementary material
The online version of this article (doi:10.1186/s12913-015-1087-6) contains supplementary material, which is available to authorized users.
PMCID: PMC4590267  PMID: 26423895
Length of stay; Hospital efficiency; Practice variation; Multilevel analysis
2.  Mortality and Length of Stay of Very Low Birth Weight and Very Preterm Infants: A EuroHOPE Study 
PLoS ONE  2015;10(6):e0131685.
The objective of this paper was to compare health outcomes and hospital care use of very low birth weight (VLBW), and very preterm (VLGA) infants in seven European countries. Analysis was performed on linkable patient-level registry data from seven European countries between 2006 and 2008 (Finland, Hungary, Italy (the Province of Rome), the Netherlands, Norway, Scotland, and Sweden). Mortality and length of stay (LoS) were adjusted for differences in gestational age (GA), sex, intrauterine growth, Apgar score at five minutes, parity and multiple births. The analysis included 16,087 infants. Both the 30-day and one-year adjusted mortality rates were lowest in the Nordic countries (Finland, Sweden and Norway) and Scotland and highest in Hungary and the Netherlands. For survivors, the adjusted average LoS during the first year of life ranged from 56 days in the Netherlands and Scotland to 81 days in Hungary. There were large differences between European countries in mortality rates and LoS in VLBW and VLGA infants. Substantial data linkage problems were observed in most countries due to inadequate identification procedures at birth, which limit data validity and should be addressed by policy makers across Europe.
PMCID: PMC4488246  PMID: 26121647
3.  Decomposing cross-country differences in quality adjusted life expectancy: the impact of value sets 
The validity, reliability and cross-country comparability of summary measures of population health (SMPH) have been persistently debated. In this debate, the measurement and valuation of nonfatal health outcomes have been defined as key issues. Our goal was to quantify and decompose international differences in health expectancy based on health-related quality of life (HRQoL). We focused on the impact of value set choice on cross-country variation.
We calculated Quality Adjusted Life Expectancy (QALE) at age 20 for 15 countries in which EQ-5D population surveys had been conducted. We applied the Sullivan approach to combine the EQ-5D based HRQoL data with life tables from the Human Mortality Database. Mean HRQoL by country-gender-age was estimated using a parametric model. We used nonparametric bootstrap techniques to compute confidence intervals. QALE was then compared across the six country-specific time trade-off value sets that were available. Finally, three counterfactual estimates were generated in order to assess the contribution of mortality, health states and health-state values to cross-country differences in QALE.
QALE at age 20 ranged from 33 years in Armenia to almost 61 years in Japan, using the UK value set. The value sets of the other five countries generated different estimates, up to seven years higher. The relative impact of choosing a different value set differed across country-gender strata between 2% and 20%. In 50% of the country-gender strata the ranking changed by two or more positions across value sets. The decomposition demonstrated a varying impact of health states, health-state values, and mortality on QALE differences across countries.
The choice of the value set in SMPH may seriously affect cross-country comparisons of health expectancy, even across populations of similar levels of wealth and education. In our opinion, it is essential to get more insight into the drivers of differences in health-state values across populations. This will enhance the usefulness of health-expectancy measures.
PMCID: PMC3146826  PMID: 21699675
4.  Benchmarking and reducing length of stay in Dutch hospitals 
To assess the development of and variation in lengths of stay in Dutch hospitals and to determine the potential reduction in hospital days if all Dutch hospitals would have an average length of stay equal to that of benchmark hospitals.
The potential reduction was calculated using data obtained from 69 hospitals that participated in the National Medical Registration (LMR). For each hospital, the average length of stay was adjusted for differences in type of admission (clinical or day-care admission) and case mix (age, diagnosis and procedure). We calculated the number of hospital days that theoretically could be saved by (i) counting unnecessary clinical admissions as day cases whenever possible, and (ii) treating all remaining clinical patients with a length of stay equal to the benchmark (15th percentile length of stay hospital).
The average (mean) length of stay in Dutch hospitals decreased from 14 days in 1980 to 7 days in 2006. In 2006 more than 80% of all hospitals reached an average length of stay shorter than the 15th percentile hospital in the year 2000. In 2006 the mean length of stay ranged from 5.1 to 8.7 days. If the average length of stay of the 15th percentile hospital in 2006 is identified as the standard that other hospitals can achieve, a 14% reduction of hospital days can be attained. This percentage varied substantially across medical specialties. Extrapolating the potential reduction of hospital days of the 69 hospitals to all 98 Dutch hospitals yielded a total savings of 1.8 million hospital days (2006). The average length of stay in Dutch hospitals if all hospitals were able to treat their patients as the 15th percentile hospital would be 6 days and the number of day cases would increase by 13%.
Hospitals in the Netherlands vary substantially in case mix adjusted length of stay. Benchmarking – using the method presented – shows the potential for efficiency improvement which can be realized by decreasing inputs (e.g. available beds for inpatient care). Future research should focus on the effect of length of stay reduction programs on outputs such as quality of care.
PMCID: PMC2582034  PMID: 18950476
5.  Measuring and explaining mortality in Dutch hospitals; The Hospital Standardized Mortality Rate between 2003 and 2005 
Indicators of hospital quality, such as hospital standardized mortality ratios (HSMR), have been used increasingly to assess and improve hospital quality. Our aim has been to describe and explain variation in new HSMRs for the Netherlands.
HSMRs were estimated using data from the complete population of discharged patients during 2003 to 2005. We used binary logistic regression to indirectly standardize for differences in case-mix. Out of a total of 101 hospitals 89 hospitals remained in our explanatory analysis. In this analysis we explored the association between HSMRs and determinants that can and cannot be influenced by hospitals. For this analysis we used a two-level hierarchical linear regression model to explain variation in yearly HSMRs.
The average HSMR decreased yearly with more than eight percent. The highest HSMR was about twice as high as the lowest HSMR in all years. More than 2/3 of the variation stemmed from between-hospital variation. Year (-), local number of general practitioners (-) and hospital type were significantly associated with the HSMR in all tested models.
HSMR scores vary substantially between hospitals, while rankings appear stable over time. We find no evidence that the HSMR cannot be used as an indicator to monitor and compare hospital quality. Because the standardization method is indirect, the comparisons are most relevant from a societal perspective but less so from an individual perspective. We find evidence of comparatively higher HSMRs in academic hospitals. This may result from (good quality) high-risk procedures, low quality of care or inadequate case-mix correction.
PMCID: PMC2362116  PMID: 18384695

Results 1-5 (5)