PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-5 (5)
 

Clipboard (0)
None
Journals
Year of Publication
Document Types
1.  Antibody to the E3 Glycoprotein Protects Mice against Lethal Venezuelan Equine Encephalitis Virus Infection▿  
Journal of Virology  2010;84(24):12683-12690.
Six monoclonal antibodies were isolated that exhibited specificity for a furin cleavage site deletion mutant (V3526) of Venezuelan equine encephalitis virus (VEEV). These antibodies comprise a single competition group and bound the E3 glycoprotein of VEEV subtype I viruses but failed to bind the E3 glycoprotein of other alphaviruses. These antibodies neutralized V3526 virus infectivity but did not neutralize the parental strain of Trinidad donkey (TrD) VEEV. However, the E3-specific antibodies did inhibit the production of virus from VEEV TrD-infected cells. In addition, passive immunization of mice demonstrated that antibody to the E3 glycoprotein provided protection against lethal VEEV TrD challenge. This is the first recognition of a protective epitope in the E3 glycoprotein. Furthermore, these results indicate that E3 plays a critical role late in the morphogenesis of progeny virus after E3 appears on the surfaces of infected cells.
doi:10.1128/JVI.01345-10
PMCID: PMC3004303  PMID: 20926570
2.  Development of a cAdVax-Based Bivalent Ebola Virus Vaccine That Induces Immune Responses against both the Sudan and Zaire Species of Ebola Virus 
Journal of Virology  2006;80(6):2738-2746.
Ebola virus (EBOV) causes a severe hemorrhagic fever for which there are currently no vaccines or effective treatments. While lethal human outbreaks have so far been restricted to sub-Saharan Africa, the potential exploitation of EBOV as a biological weapon cannot be ignored. Two species of EBOV, Sudan ebolavirus (SEBOV) and Zaire ebolavirus (ZEBOV), have been responsible for all of the deadly human outbreaks resulting from this virus. Therefore, it is important to develop a vaccine that can prevent infection by both lethal species. Here, we describe the bivalent cAdVaxE(GPs/z) vaccine, which includes the SEBOV glycoprotein (GP) and ZEBOV GP genes together in a single complex adenovirus-based vaccine (cAdVax) vector. Vaccination of mice with the bivalent cAdVaxE(GPs/z) vaccine led to efficient induction of EBOV-specific antibody and cell-mediated immune responses to both species of EBOV. In addition, the cAdVax technology demonstrated induction of a 100% protective immune response in mice, as all vaccinated C57BL/6 and BALB/c mice survived challenge with a lethal dose of ZEBOV (30,000 times the 50% lethal dose). This study demonstrates the potential efficacy of a bivalent EBOV vaccine based on a cAdVax vaccine vector design.
doi:10.1128/JVI.80.6.2738-2746.2006
PMCID: PMC1395467  PMID: 16501083
3.  Protective Cytotoxic T-Cell Responses Induced by Venezuelan Equine Encephalitis Virus Replicons Expressing Ebola Virus Proteins 
Journal of Virology  2005;79(22):14189-14196.
Infection with Ebola virus causes a severe disease accompanied by high mortality rates, and there are no licensed vaccines or therapies available for human use. Filovirus vaccine research efforts still need to determine the roles of humoral and cell-mediated immune responses in protection from Ebola virus infection. Previous studies indicated that exposure to Ebola virus proteins expressed from packaged Venezuelan equine encephalitis virus replicons elicited protective immunity in mice and that antibody-mediated protection could only be demonstrated after vaccination against the glycoprotein. In this study, the murine CD8+ T-cell responses to six Ebola virus proteins were examined. CD8+ T cells specific for Ebola virus glycoprotein, nucleoprotein, and viral proteins (VP24, VP30, VP35, and VP40) were identified by intracellular cytokine assays using splenocytes from vaccinated mice. The cells were expanded by restimulation with peptides and demonstrated cytolytic activity. Adoptive transfer of the CD8+ cytotoxic T cells protected filovirus naïve mice from challenge with Ebola virus. These data support a role for CD8+ cytotoxic T cells as part of a protective mechanism induced by vaccination against six Ebola virus proteins and provide additional evidence that cytotoxic T-cell responses can contribute to protection from filovirus infections.
doi:10.1128/JVI.79.22.14189-14196.2005
PMCID: PMC1280180  PMID: 16254354
4.  Protection from Ebola Virus Mediated by Cytotoxic T Lymphocytes Specific for the Viral Nucleoprotein 
Journal of Virology  2001;75(6):2660-2664.
Cytotoxic T lymphocytes (CTLs) are proposed to be critical for protection from intracellular pathogens such as Ebola virus. However, there have been no demonstrations that protection against Ebola virus is mediated by Ebola virus-specific CTLs. Here, we report that C57BL/6 mice vaccinated with Venezuelan equine encephalitis virus replicons encoding the Ebola virus nucleoprotein (NP) survived lethal challenge with Ebola virus. Vaccination induced both antibodies to the NP and a major histocompatibility complex class I-restricted CTL response to an 11-amino-acid sequence in the amino-terminal portion of the Ebola virus NP. Passive transfer of polyclonal NP-specific antiserum did not protect recipient mice. In contrast, adoptive transfer of CTLs specific for the Ebola virus NP protected unvaccinated mice from lethal Ebola virus challenge. The protective CTLs were CD8+, restricted to the Db class I molecule, and recognized an epitope within amino acids 43 to 53 (VYQVNNLEEIC) in the Ebola virus NP. The demonstration that CTLs can prevent lethal Ebola virus infection affects vaccine development in that protective cellular immune responses may be required for optimal protection from Ebola virus.
doi:10.1128/JVI.75.6.2660-2664.2001
PMCID: PMC115890  PMID: 11222689
5.  Venezuelan Equine Encephalitis Virus Replicon Particle Vaccine Protects Nonhuman Primates from Intramuscular and Aerosol Challenge with Ebolavirus 
Journal of Virology  2013;87(9):4952-4964.
There are no vaccines or therapeutics currently approved for the prevention or treatment of ebolavirus infection. Previously, a replicon vaccine based on Venezuelan equine encephalitis virus (VEEV) demonstrated protective efficacy against Marburg virus in nonhuman primates. Here, we report the protective efficacy of Sudan virus (SUDV)- and Ebola virus (EBOV)-specific VEEV replicon particle (VRP) vaccines in nonhuman primates. VRP vaccines were developed to express the glycoprotein (GP) of either SUDV or EBOV. A single intramuscular vaccination of cynomolgus macaques with VRP expressing SUDV GP provided complete protection against intramuscular challenge with SUDV. Vaccination against SUDV and subsequent survival of SUDV challenge did not fully protect cynomolgus macaques against intramuscular EBOV back-challenge. However, a single simultaneous intramuscular vaccination with VRP expressing SUDV GP combined with VRP expressing EBOV GP did provide complete protection against intramuscular challenge with either SUDV or EBOV in cynomolgus macaques. Finally, intramuscular vaccination with VRP expressing SUDV GP completely protected cynomolgus macaques when challenged with aerosolized SUDV, although complete protection against aerosol challenge required two vaccinations with this vaccine.
doi:10.1128/JVI.03361-12
PMCID: PMC3624300  PMID: 23408633

Results 1-5 (5)