PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-2 (2)
 

Clipboard (0)
None
Journals
Authors
more »
Year of Publication
Document Types
1.  Phase I/II Randomized Double-Blind Study of the Safety and Immunogenicity of a Nonadjuvanted Vero Cell Culture-Derived Whole-Virus H9N2 Influenza Vaccine in Healthy Adults 
Studies on candidate pandemic vaccines against avian influenza viruses have focused on H5N1, but viruses of other subtypes, such as A/H9N2, are also considered to have pandemic potential. We investigated the safety and immunogenicity of two immunizations with one of five different antigen doses (ranging from 3.75 to 45 μg of hemagglutinin antigen) of a nonadjuvanted whole-virus G9 lineage H9N2 influenza virus vaccine in healthy adults aged 18 to 49 years. The antibody responses were measured by hemagglutination inhibition (HI), microneutralization (MN), and single radial hemolysis (SRH) assays. To investigate a hypothesis that previous exposure to H2N2 viruses in subjects born in or before 1968 might prime for more robust antibody responses to H9N2 vaccination than that in subjects born after 1968, a post hoc age-stratified analysis of antibody responses was done. Both vaccinations in all dose groups were safe and well tolerated. No vaccine-related serious adverse events were reported, and the majority of the adverse reactions were rated as mild. The rates of injection site reactions were lower in the 3.75-μg- and 7.5-μg-dose groups than those in the higher-dose groups; the rates of systemic reactions were similar across all dose groups. The seroprotection rates among the different dose groups 21 days after the second immunization ranged from 52.8% to 88.9% as measured by HI assay, from 88.7% to 98.1% or 82.7% to 96.2% as measured by MN assay (MN titer cutoffs, 1:40 and 1:80, respectively), and from 94.2% to 100% as measured by SRH assay. Higher antibody responses were not induced in subjects born in or before 1968. These data indicate that a nonadjuvanted whole-virus H9N2 vaccine is well tolerated and immunogenic in healthy adults. (This study has been registered at ClinicalTrials.gov under registration no. NCT01320696.)
doi:10.1128/CVI.00275-14
PMCID: PMC4278922  PMID: 25355797
2.  A Cell Culture–Derived Influenza Vaccine Provides Consistent Protection Against Infection and Reduces the Duration and Severity of Disease in Infected Individuals 
A Vero cell culture–derived seasonal influenza vaccine provides consistently high levels of protection against cell culture–confirmed infection over a complete influenza season. Influenza symptoms are also less severe and of shorter duration in individuals who become infected despite vaccination.
Background. Current knowledge of the consistency of protection induced by seasonal influenza vaccines over the duration of a full influenza season is limited, and little is known about the clinical course of disease in individuals who become infected despite vaccination.
Methods. Data from a randomized double-blind placebo-controlled clinical trial undertaken in healthy young adults in the 2008–2009 influenza season were used to investigate the weekly cumulative efficacy of a Vero cell culture–derived influenza vaccine. In addition, the duration and severity of disease in vaccine and placebo recipients with cell culture–confirmed influenza infection were compared.
Results. Vaccine efficacy against matching strains was consistently high (73%–82%) throughout the study, including the entire period of the influenza season during which influenza activity was above the epidemic threshold. Vaccine efficacy was also consistent (68%–83%) when calculated for all strains, irrespective of antigenic match. Vaccination also ameliorated disease symptoms when infection was not prevented. Bivariate analysis of duration and severity showed a significant amelioration of myalgia (P = .003), headache (P = .025), and fatigue (P = .013) in infected vaccinated subjects compared with placebo. Cough (P = .143) and oropharyngeal pain (P = .083) were also reduced in infected vaccinated subjects.
Conclusions. A Vero cell culture–derived influenza vaccine provides consistently high levels of protection against cell culture–confirmed infection by seasonal influenza virus and significantly reduces the duration and severity of disease in those individuals in which infection is not prevented.
Clinical Trials Registration. ClinicalTrials.gov NCT00566345.
doi:10.1093/cid/cir959
PMCID: PMC3297649  PMID: 22267715

Results 1-2 (2)