PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-2 (2)
 

Clipboard (0)
None
Journals
Authors
Year of Publication
Document Types
1.  In Vivo Methods for the Assessment of Topical Drug Bioavailability 
Pharmaceutical Research  2007;25(1):87-103.
This paper reviews some current methods for the in vivo assessment of local cutaneous bioavailability in humans after topical drug application. After an introduction discussing the importance of local drug bioavailability assessment and the limitations of model-based predictions, the focus turns to the relevance of experimental studies. The available techniques are then reviewed in detail, with particular emphasis on the tape stripping and microdialysis methodologies. Other less developed techniques, including the skin biopsy, suction blister, follicle removal and confocal Raman spectroscopy techniques are also described.
doi:10.1007/s11095-007-9429-7
PMCID: PMC2217624  PMID: 17985216
cutaneous bioavailability; cutaneous drug concentration; dermatopharmacokinetics; microdialysis; tape stripping
2.  Recovery of human skin impedance in vivo after lontophoresis: Effect of metal ions 
AAPS PharmSci  2000;2(3):38-44.
The objective of this study was to investigate the effect of the counter-ion (cation) on the recovery of human skin impedance after iontophoresis in vivo. A series of metal chloride aqueous solutions (NaCl, KCl, CaCl2, and MgCl2) was investigated: first at the same concentration (133 mmol/L) and then at the same ionic strength as a NaCl solution at 133 mmol/L. The influence of hydration alone was also examined as a control. The recovery of human skin impedance was followed in the frequency range 1–1,000 Hz, over a 30-minute period after iontophoresis during which 3 impedance spectra were recorded. The results revealed that at t=30 minutes post-iontophoresis, skin impedance was approximately 3 times greater than the value immediately after the cessation of current passage. However, the results showed that the nature of the cation had no effect on recovery, regardless of whether the ions were at the same concentration or at an equivalent ionic strength. A simple parallel RC-equivalent circuit model for skin was used to determine the resistive (R) and capacitive (C) contributions to skin impedance. An analysis of variance on the calculated R and C values did not show any differences between the electrolytes used at the 2 different ionic strengths.
doi:10.1208/ps020323
PMCID: PMC2761134  PMID: 11741239

Results 1-2 (2)