PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-15 (15)
 

Clipboard (0)
None
Journals
Year of Publication
Document Types
author:("gulik, amend")
1.  Susceptibility to Chronic Mucus Hypersecretion, a Genome Wide Association Study 
PLoS ONE  2014;9(4):e91621.
Background
Chronic mucus hypersecretion (CMH) is associated with an increased frequency of respiratory infections, excess lung function decline, and increased hospitalisation and mortality rates in the general population. It is associated with smoking, but it is unknown why only a minority of smokers develops CMH. A plausible explanation for this phenomenon is a predisposing genetic constitution. Therefore, we performed a genome wide association (GWA) study of CMH in Caucasian populations.
Methods
GWA analysis was performed in the NELSON-study using the Illumina 610 array, followed by replication and meta-analysis in 11 additional cohorts. In total 2,704 subjects with, and 7,624 subjects without CMH were included, all current or former heavy smokers (≥20 pack-years). Additional studies were performed to test the functional relevance of the most significant single nucleotide polymorphism (SNP).
Results
A strong association with CMH, consistent across all cohorts, was observed with rs6577641 (p = 4.25×10−6, OR = 1.17), located in intron 9 of the special AT-rich sequence-binding protein 1 locus (SATB1) on chromosome 3. The risk allele (G) was associated with higher mRNA expression of SATB1 (4.3×10−9) in lung tissue. Presence of CMH was associated with increased SATB1 mRNA expression in bronchial biopsies from COPD patients. SATB1 expression was induced during differentiation of primary human bronchial epithelial cells in culture.
Conclusions
Our findings, that SNP rs6577641 is associated with CMH in multiple cohorts and is a cis-eQTL for SATB1, together with our additional observation that SATB1 expression increases during epithelial differentiation provide suggestive evidence that SATB1 is a gene that affects CMH.
doi:10.1371/journal.pone.0091621
PMCID: PMC3979657  PMID: 24714607
2.  Dissecting direct and indirect genetic effects on chronic obstructive pulmonary disease (COPD) susceptibility 
Human genetics  2013;132(4):431-441.
Cigarette smoking is the major environmental risk factor for chronic obstructive pulmonary disease (COPD). Genome-wide association studies have provided compelling associations for three loci with COPD. In this study, we aimed to estimate direct, i.e., independent from smoking, and indirect effects of those loci on COPD development using mediation analysis. We included a total of 3,424 COPD cases and 1,872 unaffected controls with data on two smoking-related phenotypes: lifetime average smoking intensity and cumulative exposure to tobacco smoke (pack years). Our analysis revealed that effects of two linked variants (rs1051730 and rs8034191) in the AGPHD1/CHRNA3 cluster on COPD development are significantly, yet not entirely, mediated by the smoking-related phenotypes. Approximately 30 % of the total effect of variants in the AGPHD1/CHRNA3 cluster on COPD development was mediated by pack years. Simultaneous analysis of modestly (r2 = 0.21) linked markers in CHRNA3 and IREB2 revealed that an even larger (~42 %) proportion of the total effect of the CHRNA3 locus on COPD was mediated by pack years after adjustment for an IREB2 single nucleotide polymorphism. This study confirms the existence of direct effects of the AGPHD1/CHRNA3, IREB2, FAM13A and HHIP loci on COPD development. While the association of the AGPHD1/CHRNA3 locus with COPD is significantly mediated by smoking-related phenotypes, IREB2 appears to affect COPD independently of smoking.
doi:10.1007/s00439-012-1262-3
PMCID: PMC3600068  PMID: 23299987
3.  Genome-Wide Association Analysis of Blood Biomarkers in Chronic Obstructive Pulmonary Disease 
Rationale: A genome-wide association study (GWAS) for circulating chronic obstructive pulmonary disease (COPD) biomarkers could identify genetic determinants of biomarker levels and COPD susceptibility.
Objectives: To identify genetic variants of circulating protein biomarkers and novel genetic determinants of COPD.
Methods: GWAS was performed for two pneumoproteins, Clara cell secretory protein (CC16) and surfactant protein D (SP-D), and five systemic inflammatory markers (C-reactive protein, fibrinogen, IL-6, IL-8, and tumor necrosis factor-α) in 1,951 subjects with COPD. For genome-wide significant single nucleotide polymorphisms (SNPs) (P < 1 × 10−8), association with COPD susceptibility was tested in 2,939 cases with COPD and 1,380 smoking control subjects. The association of candidate SNPs with mRNA expression in induced sputum was also elucidated.
Measurements and Main Results: Genome-wide significant susceptibility loci affecting biomarker levels were found only for the two pneumoproteins. Two discrete loci affecting CC16, one region near the CC16 coding gene (SCGB1A1) on chromosome 11 and another locus approximately 25 Mb away from SCGB1A1, were identified, whereas multiple SNPs on chromosomes 6 and 16, in addition to SNPs near SFTPD, had genome-wide significant associations with SP-D levels. Several SNPs affecting circulating CC16 levels were significantly associated with sputum mRNA expression of SCGB1A1 (P = 0.009–0.03). Several SNPs highly associated with CC16 or SP-D levels were nominally associated with COPD in a collaborative GWAS (P = 0.001–0.049), although these COPD associations were not replicated in two additional cohorts.
Conclusions: Distant genetic loci and biomarker-coding genes affect circulating levels of COPD-related pneumoproteins. A subset of these protein quantitative trait loci may influence their gene expression in the lung and/or COPD susceptibility.
Clinical trial registered with www.clinicaltrials.gov (NCT 00292552).
doi:10.1164/rccm.201206-1013OC
PMCID: PMC3622441  PMID: 23144326
biomarker; chronic obstructive pulmonary disease; genome-wide association study
4.  Genome-Wide Association Studies Identify CHRNA5/3 and HTR4 in the Development of Airflow Obstruction 
Wilk, Jemma B. | Shrine, Nick R. G. | Loehr, Laura R. | Zhao, Jing Hua | Manichaikul, Ani | Lopez, Lorna M. | Smith, Albert Vernon | Heckbert, Susan R. | Smolonska, Joanna | Tang, Wenbo | Loth, Daan W. | Curjuric, Ivan | Hui, Jennie | Cho, Michael H. | Latourelle, Jeanne C. | Henry, Amanda P. | Aldrich, Melinda | Bakke, Per | Beaty, Terri H. | Bentley, Amy R. | Borecki, Ingrid B. | Brusselle, Guy G. | Burkart, Kristin M. | Chen, Ting-hsu | Couper, David | Crapo, James D. | Davies, Gail | Dupuis, Josée | Franceschini, Nora | Gulsvik, Amund | Hancock, Dana B. | Harris, Tamara B. | Hofman, Albert | Imboden, Medea | James, Alan L. | Khaw, Kay-Tee | Lahousse, Lies | Launer, Lenore J. | Litonjua, Augusto | Liu, Yongmei | Lohman, Kurt K. | Lomas, David A. | Lumley, Thomas | Marciante, Kristin D. | McArdle, Wendy L. | Meibohm, Bernd | Morrison, Alanna C. | Musk, Arthur W. | Myers, Richard H. | North, Kari E. | Postma, Dirkje S. | Psaty, Bruce M. | Rich, Stephen S. | Rivadeneira, Fernando | Rochat, Thierry | Rotter, Jerome I. | Artigas, María Soler | Starr, John M. | Uitterlinden, André G. | Wareham, Nicholas J. | Wijmenga, Cisca | Zanen, Pieter | Province, Michael A. | Silverman, Edwin K. | Deary, Ian J. | Palmer, Lyle J. | Cassano, Patricia A. | Gudnason, Vilmundur | Barr, R. Graham | Loos, Ruth J. F. | Strachan, David P. | London, Stephanie J. | Boezen, H. Marike | Probst-Hensch, Nicole | Gharib, Sina A. | Hall, Ian P. | O’Connor, George T. | Tobin, Martin D. | Stricker, Bruno H.
Rationale: Genome-wide association studies (GWAS) have identified loci influencing lung function, but fewer genes influencing chronic obstructive pulmonary disease (COPD) are known.
Objectives: Perform meta-analyses of GWAS for airflow obstruction, a key pathophysiologic characteristic of COPD assessed by spirometry, in population-based cohorts examining all participants, ever smokers, never smokers, asthma-free participants, and more severe cases.
Methods: Fifteen cohorts were studied for discovery (3,368 affected; 29,507 unaffected), and a population-based family study and a meta-analysis of case-control studies were used for replication and regional follow-up (3,837 cases; 4,479 control subjects). Airflow obstruction was defined as FEV1 and its ratio to FVC (FEV1/FVC) both less than their respective lower limits of normal as determined by published reference equations.
Measurements and Main Results: The discovery meta-analyses identified one region on chromosome 15q25.1 meeting genome-wide significance in ever smokers that includes AGPHD1, IREB2, and CHRNA5/CHRNA3 genes. The region was also modestly associated among never smokers. Gene expression studies confirmed the presence of CHRNA5/3 in lung, airway smooth muscle, and bronchial epithelial cells. A single-nucleotide polymorphism in HTR4, a gene previously related to FEV1/FVC, achieved genome-wide statistical significance in combined meta-analysis. Top single-nucleotide polymorphisms in ADAM19, RARB, PPAP2B, and ADAMTS19 were nominally replicated in the COPD meta-analysis.
Conclusions: These results suggest an important role for the CHRNA5/3 region as a genetic risk factor for airflow obstruction that may be independent of smoking and implicate the HTR4 gene in the etiology of airflow obstruction.
doi:10.1164/rccm.201202-0366OC
PMCID: PMC3480517  PMID: 22837378
chronic obstructive pulmonary disease; single-nucleotide polymorphism; genes
5.  A genome-wide association study of COPD identifies a susceptibility locus on chromosome 19q13 
Human Molecular Genetics  2011;21(4):947-957.
The genetic risk factors for chronic obstructive pulmonary disease (COPD) are still largely unknown. To date, genome-wide association studies (GWASs) of limited size have identified several novel risk loci for COPD at CHRNA3/CHRNA5/IREB2, HHIP and FAM13A; additional loci may be identified through larger studies. We performed a GWAS using a total of 3499 cases and 1922 control subjects from four cohorts: the Evaluation of COPD Longitudinally to Identify Predictive Surrogate Endpoints (ECLIPSE); the Normative Aging Study (NAS) and National Emphysema Treatment Trial (NETT); Bergen, Norway (GenKOLS); and the COPDGene study. Genotyping was performed on Illumina platforms with additional markers imputed using 1000 Genomes data; results were summarized using fixed-effect meta-analysis. We identified a new genome-wide significant locus on chromosome 19q13 (rs7937, OR = 0.74, P = 2.9 × 10−9). Genotyping this single nucleotide polymorphism (SNP) and another nearby SNP in linkage disequilibrium (rs2604894) in 2859 subjects from the family-based International COPD Genetics Network study (ICGN) demonstrated supportive evidence for association for COPD (P = 0.28 and 0.11 for rs7937 and rs2604894), pre-bronchodilator FEV1 (P = 0.08 and 0.04) and severe (GOLD 3&4) COPD (P = 0.09 and 0.017). This region includes RAB4B, EGLN2, MIA and CYP2A6, and has previously been identified in association with cigarette smoking behavior.
doi:10.1093/hmg/ddr524
PMCID: PMC3298111  PMID: 22080838
6.  The Association of Genome-Wide Significant Spirometric Loci with Chronic Obstructive Pulmonary Disease Susceptibility 
Two recent metaanalyses of genome-wide association studies conducted by the CHARGE and SpiroMeta consortia identified novel loci yielding evidence of association at or near genome-wide significance (GWS) with FEV1 and FEV1/FVC. We hypothesized that a subset of these markers would also be associated with chronic obstructive pulmonary disease (COPD) susceptibility. Thirty-two single-nucleotide polymorphisms (SNPs) in or near 17 genes in 11 previously identified GWS spirometric genomic regions were tested for association with COPD status in four COPD case-control study samples (NETT/NAS, the Norway case-control study, ECLIPSE, and the first 1,000 subjects in COPDGene; total sample size, 3,456 cases and 1,906 controls). In addition to testing the 32 spirometric GWS SNPs, we tested a dense panel of imputed HapMap2 SNP markers from the 17 genes located near the 32 GWS SNPs and in a set of 21 well studied COPD candidate genes. Of the previously identified GWS spirometric genomic regions, three loci harbored SNPs associated with COPD susceptibility at a 5% false discovery rate: the 4q24 locus including FLJ20184/INTS12/GSTCD/NPNT, the 6p21 locus including AGER and PPT2, and the 5q33 locus including ADAM19. In conclusion, markers previously associated at or near GWS with spirometric measures were tested for association with COPD status in data from four COPD case-control studies, and three loci showed evidence of association with COPD susceptibility at a 5% false discovery rate.
doi:10.1165/rcmb.2011-0055OC
PMCID: PMC3262664  PMID: 21659657
7.  Identification of FGF7 as a novel susceptibility locus for chronic obstructive pulmonary disease 
Thorax  2011;66(12):1085-1090.
Rationale
Traditional genome-wide association studies (GWAS) of large cohort of subjects with chronic obstructive pulmonary disease (COPD) have successfully identified novel candidate genes, but several other plausible loci do not meet strict criteria for genome-wide significance after correction for multiple testing.
Objectives
We hypothesize that by applying unbiased weights derived from unique populations we can identify additional COPD susceptibility loci.
Methods
We performed a homozygosity haplotype analysis on a group of subjects with and without COPD to identify regions of conserved homozygosity (RCHH). Weights were constructed based on the frequency of these RCHH in case vs. controls, and used to adjust the P values from a large collaborative GWAS of COPD.
Results
We identified 2,318 regions of conserved homozygosity, of which 576 were significantly (P < .05) overrepresented in cases. After applying the weights constructed from these regions to a collaborative GWAS of COPD, we identified two single nucleotide polymorphisms in a novel gene (FGF7) that gained genome-wide significance by the false discovery rate method. In a follow-up analysis, both SNPs (rs12591300 and rs4480740) were significantly associated with COPD in an independent population (combined P values of 7.9E-07 and 2.8E-06 respectively). In another independent population, increased lung tissue FGF7 expression was associated with worse measures of lung function.
Conclusion
Weights constructed from a homozygosity haplotype analysis of an isolated population successfully identify novel genetic associations from a GWAS on a separate population. This method can be used to identify promising candidate genes that fail to meet strict correction for multiple testing.
doi:10.1136/thoraxjnl-2011-200017
PMCID: PMC3348619  PMID: 21921092
8.  Genome-wide association study of smoking behaviors in COPD patients 
Thorax  2011;66(10):894-902.
Background
Cigarette smoking is a major risk factor for COPD and COPD severity. Previous genome-wide association studies (GWAS) have identified numerous single nucleotide polymorphisms (SNPs) associated with the number of cigarettes smoked per day (CPD) and a Dopamine Beta-Hydroxylase (DBH) locus associated with smoking cessation in multiple populations.
Objective
To identify SNPs associated with lifetime average and current CPD, age at smoking initiation, and smoking cessation in COPD subjects.
Methods
GWAS were conducted in 4 independent cohorts encompassing 3,441 ever-smoking COPD subjects (GOLD stage II or higher). Untyped SNPs were imputed using HapMap (phase II) panel. Results from all cohorts were meta-analyzed.
Results
Several SNPs near the HLA region on chromosome 6p21 and in an intergenic region on chromosome 2q21 showed associations with age at smoking initiation, both with the lowest p=2×10−7. No SNPs were associated with lifetime average CPD, current CPD or smoking cessation with p<10−6. Nominally significant associations with candidate SNPs within alpha-nicotinic acetylcholine receptors 3/5 (CHRNA3/CHRNA5; e.g. p=0.00011 for SNP rs1051730) and Cytochrome P450 2A6 (CYP2A6; e.g. p=2.78×10−5 for a nonsynonymous SNP rs1801272) regions were observed for lifetime average CPD, however only CYP2A6 showed evidence of significant association with current CPD. A candidate SNP (rs3025343) in the DBH was significantly (p=0.015) associated with smoking cessation.
Conclusion
We identified two candidate regions associated with age at smoking initiation in COPD subjects. Associations of CHRNA3/CHRNA5 and CYP2A6 loci with CPD and DBH with smoking cessation are also likely of importance in the smoking behaviors of COPD patients.
doi:10.1136/thoraxjnl-2011-200154
PMCID: PMC3302576  PMID: 21685187
Chronic Obstructive Pulmonary Disease (COPD); Genome Wide Association study (GWAS); smoking behaviors; Single Nucleotide Polymorphism (SNP)
9.  Genome-Wide Association Analysis of Body Mass in Chronic Obstructive Pulmonary Disease 
Cachexia, whether assessed by body mass index (BMI) or fat-free mass index (FFMI), affects a significant proportion of patients with chronic obstructive pulmonary disease (COPD), and is an independent risk factor for increased mortality, increased emphysema, and more severe airflow obstruction. The variable development of cachexia among patients with COPD suggests a role for genetic susceptibility. The objective of the present study was to determine genetic susceptibility loci involved in the development of low BMI and FFMI in subjects with COPD. A genome-wide association study (GWAS) of BMI was conducted in three independent cohorts of European descent with Global Initiative for Chronic Obstructive Lung Disease stage II or higher COPD: Evaluation of COPD Longitudinally to Identify Predictive Surrogate End-Points (ECLIPSE; n = 1,734); Norway-Bergen cohort (n = 851); and a subset of subjects from the National Emphysema Treatment Trial (NETT; n = 365). A genome-wide association of FFMI was conducted in two of the cohorts (ECLIPSE and Norway). In the combined analyses, a significant association was found between rs8050136, located in the first intron of the fat mass and obesity–associated (FTO) gene, and BMI (P = 4.97 × 10−7) and FFMI (P = 1.19 × 10−7). We replicated the association in a fourth, independent cohort consisting of 502 subjects with COPD from COPDGene (P = 6 × 10−3). Within the largest contributing cohort of our analysis, lung function, as assessed by forced expiratory volume at 1 second, varied significantly by FTO genotype. Our analysis suggests a potential role for the FTO locus in the determination of anthropomorphic measures associated with COPD.
doi:10.1165/rcmb.2010-0294OC
PMCID: PMC3266061  PMID: 21037115
chronic obstructive pulmonary disease genetics; chronic obstructive pulmonary disease epidemiology; chronic obstructive pulmonary disease metabolism; genome-wide association study
10.  Polymorphisms in Surfactant Protein–D Are Associated with Chronic Obstructive Pulmonary Disease 
Chronic obstructive pulmonary disease (COPD) is characterized by alveolar destruction and abnormal inflammatory responses to noxious stimuli. Surfactant protein–D (SFTPD) is immunomodulatory and essential to host defense. We hypothesized that polymorphisms in SFTPD could influence the susceptibility to COPD. We genotyped six single-nucleotide polymorphisms (SNPs) in surfactant protein D in 389 patients with COPD in the National Emphysema Treatment Trial (NETT) and 472 smoking control subjects from the Normative Aging Study (NAS). Case-control association analysis was performed using Cochran–Armitage trend tests and multivariate logistic regression. The replication of significant associations was attempted in the Boston Early-Onset COPD Study, the Evaluation of COPD Longitudinally to Identify Predictive Surrogate Endpoints (ECLIPSE) Study, and the Bergen Cohort. We also correlated SFTPD genotypes with serum concentrations of surfactant protein–D (SP-D) in the ECLIPSE Study. In the NETT–NAS case-control analysis, four SFTPD SNPs were associated with susceptibility to COPD: rs2245121 (P = 0.01), rs911887 (P = 0.006), rs6413520 (P = 0.004), and rs721917 (P = 0.006). In the family-based analysis of the Boston Early-Onset COPD Study, rs911887 was associated with prebronchodilator and postbronchodilator FEV1 (P = 0.003 and P = 0.02, respectively). An intronic SNP in SFTPD, rs7078012, was associated with COPD in the ECLIPSE Study and the Bergen Cohort. Multiple SFTPD SNPs were associated with serum SP-D concentrations in the ECLIPSE Study. We demonstrated an association of polymorphisms in SFTPD with COPD in multiple populations. We demonstrated a correlation between SFTPD SNPs and SP-D protein concentrations. The SNPs associated with COPD and SP-D concentrations differed, suggesting distinct genetic influences on susceptibility to COPD and SP-D concentrations.
doi:10.1165/rcmb.2009-0360OC
PMCID: PMC3095932  PMID: 20448057
COPD; surfactant protein–D; single-nucleotide polymorphisms; genetics
11.  Genome-wide Association Study Identifies BICD1 as a Susceptibility Gene for Emphysema 
Rationale: Chronic obstructive pulmonary disease (COPD), characterized by airflow limitation, is a disorder with high phenotypic and genetic heterogeneity. Pulmonary emphysema is a major but variable component of COPD; familial data suggest that different components of COPD, such as emphysema, may be influenced by specific genetic factors.
Objectives: To identify genetic determinants of emphysema assessed through high-resolution chest computed tomography in individuals with COPD.
Methods: We performed a genome-wide association study (GWAS) of emphysema determined from chest computed tomography scans with a total of 2,380 individuals with COPD in three independent cohorts of white individuals from (1) a cohort from Bergen, Norway, (2) the Evaluation of COPD Longitudinally to Identify Predictive Surrogate Endpoints (ECLIPSE) Study, and (3) the National Emphysema Treatment Trial (NETT). We tested single-nucleotide polymorphism associations with the presence or absence of emphysema determined by radiologist assessment in two of the three cohorts and a quantitative emphysema trait (percentage of lung voxels less than –950 Hounsfield units) in all three cohorts.
Measurements and Main Results: We identified association of a single-nucleotide polymorphism in BICD1 with the presence or absence of emphysema (P = 5.2 × 10−7 with at least mild emphysema vs. control subjects; P = 4.8 × 10−8 with moderate and more severe emphysema vs. control subjects).
Conclusions: Our study suggests that genetic variants in BICD1 are associated with qualitative emphysema in COPD. Variants in BICD1 are associated with length of telomeres, which suggests that a mechanism linked to accelerated aging may be involved in the pathogenesis of emphysema.
Clinical trial registered with www.clinicaltrials.gov (NCT00292552).
doi:10.1164/rccm.201004-0541OC
PMCID: PMC3040393  PMID: 20709820
emphysema; chronic obstructive pulmonary disease; BICD1; single-nucleotide polymorphism
12.  Genetics of Sputum Gene Expression in Chronic Obstructive Pulmonary Disease 
PLoS ONE  2011;6(9):e24395.
Previous expression quantitative trait loci (eQTL) studies have performed genetic association studies for gene expression, but most of these studies examined lymphoblastoid cell lines from non-diseased individuals. We examined the genetics of gene expression in a relevant disease tissue from chronic obstructive pulmonary disease (COPD) patients to identify functional effects of known susceptibility genes and to find novel disease genes. By combining gene expression profiling on induced sputum samples from 131 COPD cases from the ECLIPSE Study with genomewide single nucleotide polymorphism (SNP) data, we found 4315 significant cis-eQTL SNP-probe set associations (3309 unique SNPs). The 3309 SNPs were tested for association with COPD in a genomewide association study (GWAS) dataset, which included 2940 COPD cases and 1380 controls. Adjusting for 3309 tests (p<1.5e-5), the two SNPs which were significantly associated with COPD were located in two separate genes in a known COPD locus on chromosome 15: CHRNA5 and IREB2. Detailed analysis of chromosome 15 demonstrated additional eQTLs for IREB2 mapping to that gene. eQTL SNPs for CHRNA5 mapped to multiple linkage disequilibrium (LD) bins. The eQTLs for IREB2 and CHRNA5 were not in LD. Seventy-four additional eQTL SNPs were associated with COPD at p<0.01. These were genotyped in two COPD populations, finding replicated associations with a SNP in PSORS1C1, in the HLA-C region on chromosome 6. Integrative analysis of GWAS and gene expression data from relevant tissue from diseased subjects has located potential functional variants in two known COPD genes and has identified a novel COPD susceptibility locus.
doi:10.1371/journal.pone.0024395
PMCID: PMC3174957  PMID: 21949713
13.  Multistudy Fine Mapping of Chromosome 2q Identifies XRCC5 as a Chronic Obstructive Pulmonary Disease Susceptibility Gene 
Rationale: Several family-based studies have identified genetic linkage for lung function and airflow obstruction to chromosome 2q.
Objectives: We hypothesized that merging results of high-resolution single nucleotide polymorphism (SNP) mapping in four separate populations would lead to the identification of chronic obstructive pulmonary disease (COPD) susceptibility genes on chromosome 2q.
Methods: Within the chromosome 2q linkage region, 2,843 SNPs were genotyped in 806 COPD cases and 779 control subjects from Norway, and 2,484 SNPs were genotyped in 309 patients with severe COPD from the National Emphysema Treatment Trial and 330 community control subjects. Significant associations from the combined results across the two case-control studies were followed up in 1,839 individuals from 603 families from the International COPD Genetics Network (ICGN) and in 949 individuals from 127 families in the Boston Early-Onset COPD Study.
Measurements and Main Results: Merging the results of the two case-control analyses, 14 of the 790 overlapping SNPs had a combined P < 0.01. Two of these 14 SNPs were consistently associated with COPD in the ICGN families. The association with one SNP, located in the gene XRCC5, was replicated in the Boston Early-Onset COPD Study, with a combined P = 2.51 × 10−5 across the four studies, which remains significant when adjusted for multiple testing (P = 0.02). Genotype imputation confirmed the association with SNPs in XRCC5.
Conclusions: By combining data from COPD genetic association studies conducted in four independent patient samples, we have identified XRCC5, an ATP-dependent DNA helicase, as a potential COPD susceptibility gene.
doi:10.1164/rccm.200910-1586OC
PMCID: PMC2937234  PMID: 20463177
emphysema; genetic linkage; metaanalysis; single nucleotide polymorphism
14.  Variants in FAM13A are associated with chronic obstructive pulmonary disease 
Nature genetics  2010;42(3):200-202.
Substantial evidence suggests that there is genetic susceptibility to chronic obstructive pulmonary disease (COPD). To identify common genetic risk variants, we performed a genome-wide association study in 2940 cases and 1380 smoking controls with normal lung function. We demonstrate a novel susceptibility locus at 4q22.1 in FAM13A (rs7671167, OR=0.76, P=8.6×10−8) and provide evidence of replication in one case-control and two family-based cohorts (for all studies, combined P=1.2×10−11).
doi:10.1038/ng.535
PMCID: PMC2828499  PMID: 20173748
15.  A Genome-Wide Association Study in Chronic Obstructive Pulmonary Disease (COPD): Identification of Two Major Susceptibility Loci 
PLoS Genetics  2009;5(3):e1000421.
There is considerable variability in the susceptibility of smokers to develop chronic obstructive pulmonary disease (COPD). The only known genetic risk factor is severe deficiency of α1-antitrypsin, which is present in 1–2% of individuals with COPD. We conducted a genome-wide association study (GWAS) in a homogenous case-control cohort from Bergen, Norway (823 COPD cases and 810 smoking controls) and evaluated the top 100 single nucleotide polymorphisms (SNPs) in the family-based International COPD Genetics Network (ICGN; 1891 Caucasian individuals from 606 pedigrees) study. The polymorphisms that showed replication were further evaluated in 389 subjects from the US National Emphysema Treatment Trial (NETT) and 472 controls from the Normative Aging Study (NAS) and then in a fourth cohort of 949 individuals from 127 extended pedigrees from the Boston Early-Onset COPD population. Logistic regression models with adjustments of covariates were used to analyze the case-control populations. Family-based association analyses were conducted for a diagnosis of COPD and lung function in the family populations. Two SNPs at the α-nicotinic acetylcholine receptor (CHRNA 3/5) locus were identified in the genome-wide association study. They showed unambiguous replication in the ICGN family-based analysis and in the NETT case-control analysis with combined p-values of 1.48×10−10, (rs8034191) and 5.74×10−10 (rs1051730). Furthermore, these SNPs were significantly associated with lung function in both the ICGN and Boston Early-Onset COPD populations. The C allele of the rs8034191 SNP was estimated to have a population attributable risk for COPD of 12.2%. The association of hedgehog interacting protein (HHIP) locus on chromosome 4 was also consistently replicated, but did not reach genome-wide significance levels. Genome-wide significant association of the HHIP locus with lung function was identified in the Framingham Heart study (Wilk et al., companion article in this issue of PLoS Genetics; doi:10.1371/journal.pgen.1000429). The CHRNA 3/5 and the HHIP loci make a significant contribution to the risk of COPD. CHRNA3/5 is the same locus that has been implicated in the risk of lung cancer.
Author Summary
There is considerable variability in the susceptibility of smokers to develop chronic obstructive pulmonary disease (COPD), which is a heritable multi-factorial trait. Identifying the genetic determinants of COPD risk will have tremendous public health importance. This study describes the first genome-wide association study (GWAS) in COPD. We conducted a GWAS in a homogenous case-control cohort from Norway and evaluated the top 100 single nucleotide polymorphisms in the family-based International COPD Genetics Network. The polymorphisms that showed replication were further evaluated in subjects from the US National Emphysema Treatment Trial and controls from the Normative Aging Study and then in a fourth cohort of extended pedigrees from the Boston Early-Onset COPD population. Two polymorphisms in the α-nicotinic acetylcholine receptor 3/5 locus on chromosome 15 showed unambiguous evidence of association with COPD. This locus has previously been implicated in both smoking behavior and risk of lung cancer, suggesting the possibility of multiple functional polymorphisms in the region or a single polymorphism with wide phenotypic consequences. The hedgehog interacting protein (HHIP) locus on chromosome 4, which is associated with COPD, is also a significant risk locus for COPD.
doi:10.1371/journal.pgen.1000421
PMCID: PMC2650282  PMID: 19300482

Results 1-15 (15)