PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-7 (7)
 

Clipboard (0)
None
Journals
Year of Publication
1.  Understanding the Elusive Mechanism of Action of TCF7L2 in Metabolism 
Diabetes  2012;61(11):2657-2658.
doi:10.2337/db12-0891
PMCID: PMC3478546  PMID: 23093653
2.  Large Copy-Number Variations Are Enriched in Cases With Moderate to Extreme Obesity 
Diabetes  2010;59(10):2690-2694.
OBJECTIVE
Obesity is an increasingly common disorder that predisposes to several medical conditions, including type 2 diabetes. We investigated whether large and rare copy-number variations (CNVs) differentiate moderate to extreme obesity from never-overweight control subjects.
RESEARCH DESIGN AND METHODS
Using single nucleotide polymorphism (SNP) arrays, we performed a genome-wide CNV survey on 430 obese case subjects (BMI >35 kg/m2) and 379 never-overweight control subjects (BMI <25 kg/m2). All subjects were of European ancestry and were genotyped on the Illumina HumanHap550 arrays with ∼550,000 SNP markers. The CNV calls were generated by PennCNV software.
RESULTS
CNVs >1 Mb were found to be overrepresented in case versus control subjects (odds ratio [OR] = 1.5 [95% CI 0.5–5]), and CNVs >2 Mb were present in 1.3% of the case subjects but were absent in control subjects (OR = infinity [95% CI 1.2–infinity]). When focusing on rare deletions that disrupt genes, even more pronounced effect sizes are observed (OR = 2.7 [95% CI 0.5–27.1] for CNVs >1 Mb). Interestingly, obese case subjects who carry these large CNVs have moderately high BMI and do not appear to be extreme cases. Several CNVs disrupt known candidate genes for obesity, such as a 3.3-Mb deletion disrupting NAP1L5 and a 2.1-Mb deletion disrupting UCP1 and IL15.
CONCLUSIONS
Our results suggest that large CNVs, especially rare deletions, confer risk of obesity in patients with moderate obesity and that genes impacted by large CNVs represent intriguing candidates for obesity that warrant further study.
doi:10.2337/db10-0192
PMCID: PMC3279563  PMID: 20622171
3.  Examination of All Type 2 Diabetes GWAS Loci Reveals HHEX-IDE as a Locus Influencing Pediatric BMI 
Diabetes  2009;59(3):751-755.
OBJECTIVE
A number of studies have found that BMI in early life influences the risk of developing type 2 diabetes later in life. Our goal was to investigate if any type 2 diabetes variants uncovered through genome-wide association studies (GWAS) impact BMI in childhood.
RESEARCH DESIGN AND METHODS
Using data from an ongoing GWAS of pediatric BMI in our cohort, we investigated the association of pediatric BMI with 20 single nucleotide polymorphisms at 18 type 2 diabetes loci uncovered through GWAS, consisting of ADAMTS9, CDC123-CAMK1D, CDKAL1, CDKN2A/B, EXT2, FTO, HHEX-IDE, IGF2BP2, the intragenic region on 11p12, JAZF1, KCNQ1, LOC387761, MTNR1B, NOTCH2, SLC30A8, TCF7L2, THADA, and TSPAN8-LGR5. We randomly partitioned our cohort exactly in half in order to have a discovery cohort (n = 3,592) and a replication cohort (n = 3,592).
RESULTS
Our data show that the major type 2 diabetes risk–conferring G allele of rs7923837 at the HHEX-IDE locus was associated with higher pediatric BMI in both the discovery (P = 0.0013 and survived correction for 20 tests) and replication (P = 0.023) sets (combined P = 1.01 × 10−4). Association was not detected with any other known type 2 diabetes loci uncovered to date through GWAS except for the well-established FTO.
CONCLUSIONS
Our data show that the same genetic HHEX-IDE variant, which is associated with type 2 diabetes from previous studies, also influences pediatric BMI.
doi:10.2337/db09-0972
PMCID: PMC2828649  PMID: 19933996
4.  Examination of Type 2 Diabetes Loci Implicates CDKAL1 as a Birth Weight Gene 
Diabetes  2009;58(10):2414-2418.
OBJECTIVE
A number of studies have found that reduced birth weight is associated with type 2 diabetes later in life; however, the underlying mechanism for this correlation remains unresolved. Recently, association has been demonstrated between low birth weight and single nucleotide polymorphisms (SNPs) at the CDKAL1 and HHEX-IDE loci, regions that were previously implicated in the pathogenesis of type 2 diabetes. In order to investigate whether type 2 diabetes risk–conferring alleles associate with low birth weight in our Caucasian childhood cohort, we examined the effects of 20 such loci on this trait.
RESEARCH DESIGN AND METHODS
Using data from an ongoing genome-wide association study in our cohort of 5,465 Caucasian children with recorded birth weights, we investigated the association of the previously reported type 2 diabetes–associated variation at 20 loci including TCF7L2, HHEX-IDE, PPARG, KCNJ11, SLC30A8, IGF2BP2, CDKAL1, CDKN2A/2B, and JAZF1 with birth weight.
RESULTS
Our data show that the minor allele of rs7756992 (P = 8 × 10−5) at the CDKAL1 locus is strongly associated with lower birth weight, whereas a perfect surrogate for variation previously implicated for the trait at the same locus only yielded nominally significant association (P = 0.01; r2 rs7756992 = 0.677). However, association was not detected with any of the other type 2 diabetes loci studied.
CONCLUSIONS
We observe association between lower birth weight and type 2 diabetes risk–conferring alleles at the CDKAL1 locus. Our data show that the same genetic locus that has been identified as a marker for type 2 diabetes in previous studies also influences birth weight.
doi:10.2337/db09-0506
PMCID: PMC2750235  PMID: 19592620
5.  Follow-Up Analysis of Genome-Wide Association Data Identifies Novel Loci for Type 1 Diabetes 
Diabetes  2009;58(1):290-295.
OBJECTIVE—Two recent genome-wide association (GWA) studies have revealed novel loci for type 1 diabetes, a common multifactorial disease with a strong genetic component. To fully utilize the GWA data that we had obtained by genotyping 563 type 1 diabetes probands and 1,146 control subjects, as well as 483 case subject–parent trios, using the Illumina HumanHap550 BeadChip, we designed a full stage 2 study to capture other possible association signals.
RESEARCH DESIGN AND METHODS—From our existing datasets, we selected 982 markers with P < 0.05 in both GWA cohorts. Genotyping these in an independent set of 636 nuclear families with 974 affected offspring revealed 75 markers that also had P < 0.05 in this third cohort. Among these, six single nucleotide polymorphisms in five novel loci also had P < 0.05 in the Wellcome Trust Case-Control Consortium dataset and were further tested in 1,303 type 1 diabetes probands from the Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications (DCCT/EDIC) plus 1,673 control subjects.
RESULTS—Two markers (rs9976767 and rs3757247) remained significant after adjusting for the number of tests in this last cohort; they reside in UBASH3A (OR 1.16; combined P = 2.33 × 10−8) and BACH2 (1.13; combined P = 1.25 × 10−6).
CONCLUSIONS—Evaluation of a large number of statistical GWA candidates in several independent cohorts has revealed additional loci that are associated with type 1 diabetes. The two genes at these respective loci, UBASH3A and BACH2, are both biologically relevant to autoimmunity.
doi:10.2337/db08-1022
PMCID: PMC2606889  PMID: 18840781
6.  Association Analysis of Type 2 Diabetes Loci in Type 1 Diabetes 
Diabetes  2008;57(7):1983-1986.
OBJECTIVE—To search for a possible association of type 1 diabetes with 10 validated type 2 diabetes loci, i.e., PPARG, KCNJ11, WFS1, HNF1B, IDE/HHEX, SLC30A8, CDKAL1, CDKN2A/B, IGF2BP2, and FTO/RPGRIP1L.
RESEARCH DESIGN AND METHODS—Two European population samples were studied: 1) one case-control cohort of 514 type 1 diabetic subjects and 2,027 control subjects and 2) one family cohort of 483 complete type 1 diabetic case-parent trios (total 997 affected). A total of 13 tag single nucleotide polymorphisms (SNPs) from the 10 type 2 diabetes loci were analyzed for type 1 diabetes association.
RESULTS—No association of type 1 diabetes was found with any of the 10 type 2 diabetes loci, and no age-at-onset effect was detected. By combined analysis using the Wellcome Trust Case-Control Consortium type 1 diabetes data, SNP rs1412829 in the CDKN2A/B locus bordered on significance (P = 0.039) (odds ratio 0.929 [95% CI 0.867–0.995]), which did not reach the statistical significance threshold adjusted for 13 tests (α = 0.00385).
CONCLUSIONS—This study suggests that the type 2 diabetes loci do not play any obvious role in type 1 diabetes genetic susceptibility. The distinct molecular mechanisms of the two diseases highlighted the importance of differentiation diagnosis and different treatment principles.
doi:10.2337/db08-0270
PMCID: PMC2453613  PMID: 18426861
7.  Transferability and Fine Mapping of Type 2 Diabetes Loci in African Americans 
Diabetes  2013;62(3):965-976.
Type 2 diabetes (T2D) disproportionally affects African Americans (AfA) but, to date, genetic variants identified from genome-wide association studies (GWAS) are primarily from European and Asian populations. We examined the single nucleotide polymorphism (SNP) and locus transferability of 40 reported T2D loci in six AfA GWAS consisting of 2,806 T2D case subjects with or without end-stage renal disease and 4,265 control subjects from the Candidate Gene Association Resource Plus Study. Our results revealed that seven index SNPs at the TCF7L2, KLF14, KCNQ1, ADCY5, CDKAL1, JAZF1, and GCKR loci were significantly associated with T2D (P < 0.05). The strongest association was observed at TCF7L2 rs7903146 (odds ratio [OR] 1.30; P = 6.86 × 10−8). Locus-wide analysis demonstrated significant associations (Pemp < 0.05) at regional best SNPs in the TCF7L2, KLF14, and HMGA2 loci as well as suggestive signals in KCNQ1 after correction for the effective number of SNPs at each locus. Of these loci, the regional best SNPs were in differential linkage disequilibrium (LD) with the index and adjacent SNPs. Our findings suggest that some loci discovered in prior reports affect T2D susceptibility in AfA with similar effect sizes. The reduced and differential LD pattern in AfA compared with European and Asian populations may facilitate fine mapping of causal variants at loci shared across populations.
doi:10.2337/db12-0266
PMCID: PMC3581206  PMID: 23193183

Results 1-7 (7)