PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-4 (4)
 

Clipboard (0)
None
Journals
Year of Publication
Document Types
1.  Transferability and Fine Mapping of Type 2 Diabetes Loci in African Americans 
Diabetes  2013;62(3):965-976.
Type 2 diabetes (T2D) disproportionally affects African Americans (AfA) but, to date, genetic variants identified from genome-wide association studies (GWAS) are primarily from European and Asian populations. We examined the single nucleotide polymorphism (SNP) and locus transferability of 40 reported T2D loci in six AfA GWAS consisting of 2,806 T2D case subjects with or without end-stage renal disease and 4,265 control subjects from the Candidate Gene Association Resource Plus Study. Our results revealed that seven index SNPs at the TCF7L2, KLF14, KCNQ1, ADCY5, CDKAL1, JAZF1, and GCKR loci were significantly associated with T2D (P < 0.05). The strongest association was observed at TCF7L2 rs7903146 (odds ratio [OR] 1.30; P = 6.86 × 10−8). Locus-wide analysis demonstrated significant associations (Pemp < 0.05) at regional best SNPs in the TCF7L2, KLF14, and HMGA2 loci as well as suggestive signals in KCNQ1 after correction for the effective number of SNPs at each locus. Of these loci, the regional best SNPs were in differential linkage disequilibrium (LD) with the index and adjacent SNPs. Our findings suggest that some loci discovered in prior reports affect T2D susceptibility in AfA with similar effect sizes. The reduced and differential LD pattern in AfA compared with European and Asian populations may facilitate fine mapping of causal variants at loci shared across populations.
doi:10.2337/db12-0266
PMCID: PMC3581206  PMID: 23193183
2.  Genetic association analysis highlights new loci that modulate hematological trait variation in Caucasians and African Americans 
Human genetics  2010;129(3):307-317.
Red blood cell, white blood cell, and platelet measures, including their count, sub-type and volume, are important diagnostic and prognostic clinical parameters for several human diseases. To identify novel loci associated with hematological traits, and compare the architecture of these phenotypes between ethnic groups, the CARe Project genotyped 49,094 single nucleotide polymorphisms (SNPs) that capture variation in ~2,100 candidate genes in DNA of 23,439 Caucasians and 7,112 African Americans from five population-based cohorts. We found strong novel associations between erythrocyte phenotypes and the glucose-6 phosphate dehydrogenase (G6PD) A-allele in African Americans (rs1050828, P < 2.0 × 10−13, T-allele associated with lower red blood cell count, hemoglobin, and hematocrit, and higher mean corpuscular volume), and between platelet count and a SNP at the tropomyosin-4 (TPM4) locus (rs8109288, P = 3.0 × 10−7 in Caucasians; P = 3.0 × 10−7 in African Americans, T-allele associated with lower platelet count). We strongly replicated many genetic associations to blood cell phenotypes previously established in Caucasians. A common variant of the α-globin (HBA2-HBA1) locus was associated with red blood cell traits in African Americans, but not in Caucasians (rs1211375, P < 7 × 10−8, A-allele associated with lower hemoglobin, mean corpuscular hemoglobin, and mean corpuscular volume). Our results show similarities but also differences in the genetic regulation of hematological traits in European- and African-derived populations, and highlight the role of natural selection in shaping these differences.
doi:10.1007/s00439-010-0925-1
PMCID: PMC3442357  PMID: 21153663
3.  Genome-Wide Association Study of White Blood Cell Count in 16,388 African Americans: the Continental Origins and Genetic Epidemiology Network (COGENT) 
PLoS Genetics  2011;7(6):e1002108.
Total white blood cell (WBC) and neutrophil counts are lower among individuals of African descent due to the common African-derived “null” variant of the Duffy Antigen Receptor for Chemokines (DARC) gene. Additional common genetic polymorphisms were recently associated with total WBC and WBC sub-type levels in European and Japanese populations. No additional loci that account for WBC variability have been identified in African Americans. In order to address this, we performed a large genome-wide association study (GWAS) of total WBC and cell subtype counts in 16,388 African-American participants from 7 population-based cohorts available in the Continental Origins and Genetic Epidemiology Network. In addition to the DARC locus on chromosome 1q23, we identified two other regions (chromosomes 4q13 and 16q22) associated with WBC in African Americans (P<2.5×10−8). The lead SNP (rs9131) on chromosome 4q13 is located in the CXCL2 gene, which encodes a chemotactic cytokine for polymorphonuclear leukocytes. Independent evidence of the novel CXCL2 association with WBC was present in 3,551 Hispanic Americans, 14,767 Japanese, and 19,509 European Americans. The index SNP (rs12149261) on chromosome 16q22 associated with WBC count is located in a large inter-chromosomal segmental duplication encompassing part of the hydrocephalus inducing homolog (HYDIN) gene. We demonstrate that the chromosome 16q22 association finding is most likely due to a genotyping artifact as a consequence of sequence similarity between duplicated regions on chromosomes 16q22 and 1q21. Among the WBC loci recently identified in European or Japanese populations, replication was observed in our African-American meta-analysis for rs445 of CDK6 on chromosome 7q21 and rs4065321 of PSMD3-CSF3 region on chromosome 17q21. In summary, the CXCL2, CDK6, and PSMD3-CSF3 regions are associated with WBC count in African American and other populations. We also demonstrate that large inter-chromosomal duplications can result in false positive associations in GWAS.
Author Summary
Although recent genome-wide association studies have identified common genetic variants associated with total white blood cell (WBC) and WBC sub-type counts in European and Japanese ancestry populations, whether these or other loci account for differences in WBC count among African Americans is unknown. By examining >16,000 African Americans, we show that, in addition to the previously identified Duffy Antigen Receptor for Chemokines (DARC) locus on chromosome 1, another variant, rs9131, and other nearby variants on human chromosome 4 are associated with total WBC count in African Americans. The variants span the CXCL2 gene, which encodes an inflammatory mediator involved in WBC production and migration. We show that the association is not restricted to African Americans but is also present in independent samples of European Americans, Hispanic Americans, and Japanese. This finding is potentially important because WBC mediate or have altered counts in a variety of acute and chronic disorders.
doi:10.1371/journal.pgen.1002108
PMCID: PMC3128101  PMID: 21738479
4.  Concept, Design and Implementation of a Cardiovascular Gene-Centric 50 K SNP Array for Large-Scale Genomic Association Studies 
PLoS ONE  2008;3(10):e3583.
A wealth of genetic associations for cardiovascular and metabolic phenotypes in humans has been accumulating over the last decade, in particular a large number of loci derived from recent genome wide association studies (GWAS). True complex disease-associated loci often exert modest effects, so their delineation currently requires integration of diverse phenotypic data from large studies to ensure robust meta-analyses. We have designed a gene-centric 50 K single nucleotide polymorphism (SNP) array to assess potentially relevant loci across a range of cardiovascular, metabolic and inflammatory syndromes. The array utilizes a “cosmopolitan” tagging approach to capture the genetic diversity across ∼2,000 loci in populations represented in the HapMap and SeattleSNPs projects. The array content is informed by GWAS of vascular and inflammatory disease, expression quantitative trait loci implicated in atherosclerosis, pathway based approaches and comprehensive literature searching. The custom flexibility of the array platform facilitated interrogation of loci at differing stringencies, according to a gene prioritization strategy that allows saturation of high priority loci with a greater density of markers than the existing GWAS tools, particularly in African HapMap samples. We also demonstrate that the IBC array can be used to complement GWAS, increasing coverage in high priority CVD-related loci across all major HapMap populations. DNA from over 200,000 extensively phenotyped individuals will be genotyped with this array with a significant portion of the generated data being released into the academic domain facilitating in silico replication attempts, analyses of rare variants and cross-cohort meta-analyses in diverse populations. These datasets will also facilitate more robust secondary analyses, such as explorations with alternative genetic models, epistasis and gene-environment interactions.
doi:10.1371/journal.pone.0003583
PMCID: PMC2571995  PMID: 18974833

Results 1-4 (4)