PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-5 (5)
 

Clipboard (0)
None
Journals
Year of Publication
Document Types
1.  Copy Number Variations in Alternative Splicing Gene Networks Impact Lifespan 
PLoS ONE  2013;8(1):e53846.
Longevity has a strong genetic component evidenced by family-based studies. Lipoprotein metabolism, FOXO proteins, and insulin/IGF-1 signaling pathways in model systems have shown polygenic variations predisposing to shorter lifespan. To test the hypothesis that rare variants could influence lifespan, we compared the rates of CNVs in healthy children (0–18 years of age) with individuals 67 years or older. CNVs at a significantly higher frequency in the pediatric cohort were considered risk variants impacting lifespan, while those enriched in the geriatric cohort were considered longevity protective variants. We performed a whole-genome CNV analysis on 7,313 children and 2,701 adults of European ancestry genotyped with 302,108 SNP probes. Positive findings were evaluated in an independent cohort of 2,079 pediatric and 4,692 geriatric subjects. We detected 8 deletions and 10 duplications that were enriched in the pediatric group (P = 3.33×10−8–1.6×10−2 unadjusted), while only one duplication was enriched in the geriatric cohort (P = 6.3×10−4). Population stratification correction resulted in 5 deletions and 3 duplications remaining significant (P = 5.16×10−5–4.26×10−2) in the replication cohort. Three deletions and four duplications were significant combined (combined P = 3.7×10−4−3.9×10−2). All associated loci were experimentally validated using qPCR. Evaluation of these genes for pathway enrichment demonstrated ∼50% are involved in alternative splicing (P = 0.0077 Benjamini and Hochberg corrected). We conclude that genetic variations disrupting RNA splicing could have long-term biological effects impacting lifespan.
doi:10.1371/journal.pone.0053846
PMCID: PMC3559729  PMID: 23382853
2.  Examination of All Type 2 Diabetes GWAS Loci Reveals HHEX-IDE as a Locus Influencing Pediatric BMI 
Diabetes  2009;59(3):751-755.
OBJECTIVE
A number of studies have found that BMI in early life influences the risk of developing type 2 diabetes later in life. Our goal was to investigate if any type 2 diabetes variants uncovered through genome-wide association studies (GWAS) impact BMI in childhood.
RESEARCH DESIGN AND METHODS
Using data from an ongoing GWAS of pediatric BMI in our cohort, we investigated the association of pediatric BMI with 20 single nucleotide polymorphisms at 18 type 2 diabetes loci uncovered through GWAS, consisting of ADAMTS9, CDC123-CAMK1D, CDKAL1, CDKN2A/B, EXT2, FTO, HHEX-IDE, IGF2BP2, the intragenic region on 11p12, JAZF1, KCNQ1, LOC387761, MTNR1B, NOTCH2, SLC30A8, TCF7L2, THADA, and TSPAN8-LGR5. We randomly partitioned our cohort exactly in half in order to have a discovery cohort (n = 3,592) and a replication cohort (n = 3,592).
RESULTS
Our data show that the major type 2 diabetes risk–conferring G allele of rs7923837 at the HHEX-IDE locus was associated with higher pediatric BMI in both the discovery (P = 0.0013 and survived correction for 20 tests) and replication (P = 0.023) sets (combined P = 1.01 × 10−4). Association was not detected with any other known type 2 diabetes loci uncovered to date through GWAS except for the well-established FTO.
CONCLUSIONS
Our data show that the same genetic HHEX-IDE variant, which is associated with type 2 diabetes from previous studies, also influences pediatric BMI.
doi:10.2337/db09-0972
PMCID: PMC2828649  PMID: 19933996
3.  Examination of Type 2 Diabetes Loci Implicates CDKAL1 as a Birth Weight Gene 
Diabetes  2009;58(10):2414-2418.
OBJECTIVE
A number of studies have found that reduced birth weight is associated with type 2 diabetes later in life; however, the underlying mechanism for this correlation remains unresolved. Recently, association has been demonstrated between low birth weight and single nucleotide polymorphisms (SNPs) at the CDKAL1 and HHEX-IDE loci, regions that were previously implicated in the pathogenesis of type 2 diabetes. In order to investigate whether type 2 diabetes risk–conferring alleles associate with low birth weight in our Caucasian childhood cohort, we examined the effects of 20 such loci on this trait.
RESEARCH DESIGN AND METHODS
Using data from an ongoing genome-wide association study in our cohort of 5,465 Caucasian children with recorded birth weights, we investigated the association of the previously reported type 2 diabetes–associated variation at 20 loci including TCF7L2, HHEX-IDE, PPARG, KCNJ11, SLC30A8, IGF2BP2, CDKAL1, CDKN2A/2B, and JAZF1 with birth weight.
RESULTS
Our data show that the minor allele of rs7756992 (P = 8 × 10−5) at the CDKAL1 locus is strongly associated with lower birth weight, whereas a perfect surrogate for variation previously implicated for the trait at the same locus only yielded nominally significant association (P = 0.01; r2 rs7756992 = 0.677). However, association was not detected with any of the other type 2 diabetes loci studied.
CONCLUSIONS
We observe association between lower birth weight and type 2 diabetes risk–conferring alleles at the CDKAL1 locus. Our data show that the same genetic locus that has been identified as a marker for type 2 diabetes in previous studies also influences birth weight.
doi:10.2337/db09-0506
PMCID: PMC2750235  PMID: 19592620
4.  GWAS of blood cell traits identifies novel associated loci and epistatic interactions in Caucasian and African-American children 
Human Molecular Genetics  2012;22(7):1457-1464.
Hematological traits are important clinical indicators, the genetic determinants of which have not been fully investigated. Common measures of hematological traits include red blood cell (RBC) count, hemoglobin concentration (HGB), hematocrit (HCT), mean corpuscular hemoglobin (MCH), MCH concentration (MCHC), mean corpuscular volume (MCV), platelet count (PLT) and white blood cell (WBC) count. We carried out a genome-wide association study of the eight common hematological traits among 7943 African-American children and 6234 Caucasian children. In African Americans, we report five novel associations of HBE1 variants with HCT and MCHC, the alpha-globin gene cluster variants with RBC and MCHC, and a variant at the ARHGEF3 locus with PLT, as well as replication of four previously reported loci at genome-wide significance. In Caucasians, we report a novel association of variants at the COPZ1 locus with PLT as well as replication of four previously reported loci at genome-wide significance. Extended analysis of an association observed between MCH and the alpha-globin gene cluster variants demonstrated independent effects and epistatic interaction at the locus, impacting the risk of iron deficiency anemia in African Americans with specific genotype states. In summary, we extend the understanding of genetic variants underlying hematological traits based on analyses in African-American children.
doi:10.1093/hmg/dds534
PMCID: PMC3657475  PMID: 23263863
5.  A Genome-Wide Meta-Analysis of Six Type 1 Diabetes Cohorts Identifies Multiple Associated Loci 
PLoS Genetics  2011;7(9):e1002293.
Diabetes impacts approximately 200 million people worldwide, of whom approximately 10% are affected by type 1 diabetes (T1D). The application of genome-wide association studies (GWAS) has robustly revealed dozens of genetic contributors to the pathogenesis of T1D, with the most recent meta-analysis identifying in excess of 40 loci. To identify additional genetic loci for T1D susceptibility, we examined associations in the largest meta-analysis to date between the disease and ∼2.54 million SNPs in a combined cohort of 9,934 cases and 16,956 controls. Targeted follow-up of 53 SNPs in 1,120 affected trios uncovered three new loci associated with T1D that reached genome-wide significance. The most significantly associated SNP (rs539514, P = 5.66×10−11) resides in an intronic region of the LMO7 (LIM domain only 7) gene on 13q22. The second most significantly associated SNP (rs478222, P = 3.50×10−9) resides in an intronic region of the EFR3B (protein EFR3 homolog B) gene on 2p23; however, the region of linkage disequilibrium is approximately 800 kb and harbors additional multiple genes, including NCOA1, C2orf79, CENPO, ADCY3, DNAJC27, POMC, and DNMT3A. The third most significantly associated SNP (rs924043, P = 8.06×10−9) lies in an intergenic region on 6q27, where the region of association is approximately 900 kb and harbors multiple genes including WDR27, C6orf120, PHF10, TCTE3, C6orf208, LOC154449, DLL1, FAM120B, PSMB1, TBP, and PCD2. These latest associated regions add to the growing repertoire of gene networks predisposing to T1D.
Author Summary
Despite the fact that there is clearly a large genetic component to type 1 diabetes (T1D), uncovering the genes contributing to this disease has proven challenging. However, in the past three years there has been relatively major progress in this regard, with advances in genetic screening technologies allowing investigators to scan the genome for variants conferring risk for disease without prior hypotheses. Such genome-wide association studies have revealed multiple regions of the genome to be robustly and consistently associated with T1D. More recent findings have been a consequence of combining of multiple datasets from independent investigators in meta-analyses, which have more power to pick up additional variants contributing to the trait. In the current study, we describe the largest meta-analysis of T1D genome-wide genotyped datasets to date, which combines six large studies. As a consequence, we have uncovered three new signals residing at the chromosomal locations 13q22, 2p23, and 6q27, which went on to be replicated in independent sample sets. These latest associated regions add to the growing repertoire of gene networks predisposing to T1D.
doi:10.1371/journal.pgen.1002293
PMCID: PMC3183083  PMID: 21980299

Results 1-5 (5)