Search tips
Search criteria

Results 1-25 (27)

Clipboard (0)
more »
Year of Publication
1.  Understanding the Elusive Mechanism of Action of TCF7L2 in Metabolism 
Diabetes  2012;61(11):2657-2658.
PMCID: PMC3478546  PMID: 23093653
2.  The missense variation landscape of FTO, MC4R and TMEM18 in obese children of African ancestry 
Obesity (Silver Spring, Md.)  2013;21(1):159-163.
Common variation at the loci harboring FTO, MC4R and TMEM18 is consistently reported as being statistically the most strongly associated with obesity. We investigated if these loci also harbor rarer missense variants that confer substantially higher risk of common childhood obesity in African American (AA) children. We sequenced the exons of FTO, MC4R and TMEM18 in an initial subset of our cohort i.e. 200 obese (BMI≥95th percentile) and 200 lean AA children (BMI≤5th percentile). Any missense exonic variants that were uncovered went on to be further genotyped in a further 768 obese and 768 lean (BMI≤50th percentile) children of the same ethnicity. A number of exonic variants were observed from our sequencing effort: seven in FTO, of which four were non-synonymous (A163T, G182A, M400V and A405V), thirteen in MC4R, of which six were non-synonymous (V103I, N123S, S136A, F202L, N240S and I251L) and four in TMEM18, of which two were non-synonymous (P2S and V113L). Follow-up genotyping of these missense variants revealed only one significant difference in allele frequency between cases and controls, namely with N240S in MC4R(Fisher's Exact P = 0.0001). In summary, moderately rare missense variants within the FTO, MC4R and TMEM18 genes observed in our study did not confer risk of common childhood obesity in African Americans except for a degree of evidence for one known loss-of-function variant in MC4R.
PMCID: PMC3605748  PMID: 23505181
Obesity; Pediatrics; Genomics
3.  Developmental Origins of Genotype-Phenotype Correlations in Chronic Diseases of Old Age 
Aging and Disease  2012;3(5):385-403.
In recent years, genome wide association studies have revolutionized the understanding of the genetic architecture of complex disease, particularly in the context of disorders that present in old age, such as type 2 diabetes and cardiovascular disease. This new era is made all the more compelling by the fact that, through extensive validation efforts, there is now very strong consensus among human geneticists on what the key loci are that contribute to the pathogenesis of these traits. However, as these variants have been almost exclusively uncovered in an adult setting, there is the question of when these genetic variants start exerting their effects; indeed many may start setting up an individual’s predisposition to a disease of old age very early on in life. To this end, we review what breakthroughs have been made in elucidating which of these genetic factors are operating in childhood and conversely what discoveries have actually been made in the pediatric setting that have then been found subsequently to increase one’s risk of a late-onset disease. After all, it well known that complex traits like obesity, type 2 diabetes and inflammatory bowel disease are strongly determined by genetic factors, but the isolation of genes in these complex phenotypes in adults has been impeded by interaction with strong environmental factors. Distillation of the genetic component in these complex traits, which will at least partially have origins in childhood, should be easier to determine in a pediatric setting, where the relatively short period of a child’s lifetime limits the impact of environmental exposure.
PMCID: PMC3501394  PMID: 23185719
Disease; late-onset; childhood; genetic; association
4.  Examination of All Type 2 Diabetes GWAS Loci Reveals HHEX-IDE as a Locus Influencing Pediatric BMI 
Diabetes  2009;59(3):751-755.
A number of studies have found that BMI in early life influences the risk of developing type 2 diabetes later in life. Our goal was to investigate if any type 2 diabetes variants uncovered through genome-wide association studies (GWAS) impact BMI in childhood.
Using data from an ongoing GWAS of pediatric BMI in our cohort, we investigated the association of pediatric BMI with 20 single nucleotide polymorphisms at 18 type 2 diabetes loci uncovered through GWAS, consisting of ADAMTS9, CDC123-CAMK1D, CDKAL1, CDKN2A/B, EXT2, FTO, HHEX-IDE, IGF2BP2, the intragenic region on 11p12, JAZF1, KCNQ1, LOC387761, MTNR1B, NOTCH2, SLC30A8, TCF7L2, THADA, and TSPAN8-LGR5. We randomly partitioned our cohort exactly in half in order to have a discovery cohort (n = 3,592) and a replication cohort (n = 3,592).
Our data show that the major type 2 diabetes risk–conferring G allele of rs7923837 at the HHEX-IDE locus was associated with higher pediatric BMI in both the discovery (P = 0.0013 and survived correction for 20 tests) and replication (P = 0.023) sets (combined P = 1.01 × 10−4). Association was not detected with any other known type 2 diabetes loci uncovered to date through GWAS except for the well-established FTO.
Our data show that the same genetic HHEX-IDE variant, which is associated with type 2 diabetes from previous studies, also influences pediatric BMI.
PMCID: PMC2828649  PMID: 19933996
5.  Examination of Type 2 Diabetes Loci Implicates CDKAL1 as a Birth Weight Gene 
Diabetes  2009;58(10):2414-2418.
A number of studies have found that reduced birth weight is associated with type 2 diabetes later in life; however, the underlying mechanism for this correlation remains unresolved. Recently, association has been demonstrated between low birth weight and single nucleotide polymorphisms (SNPs) at the CDKAL1 and HHEX-IDE loci, regions that were previously implicated in the pathogenesis of type 2 diabetes. In order to investigate whether type 2 diabetes risk–conferring alleles associate with low birth weight in our Caucasian childhood cohort, we examined the effects of 20 such loci on this trait.
Using data from an ongoing genome-wide association study in our cohort of 5,465 Caucasian children with recorded birth weights, we investigated the association of the previously reported type 2 diabetes–associated variation at 20 loci including TCF7L2, HHEX-IDE, PPARG, KCNJ11, SLC30A8, IGF2BP2, CDKAL1, CDKN2A/2B, and JAZF1 with birth weight.
Our data show that the minor allele of rs7756992 (P = 8 × 10−5) at the CDKAL1 locus is strongly associated with lower birth weight, whereas a perfect surrogate for variation previously implicated for the trait at the same locus only yielded nominally significant association (P = 0.01; r2 rs7756992 = 0.677). However, association was not detected with any of the other type 2 diabetes loci studied.
We observe association between lower birth weight and type 2 diabetes risk–conferring alleles at the CDKAL1 locus. Our data show that the same genetic locus that has been identified as a marker for type 2 diabetes in previous studies also influences birth weight.
PMCID: PMC2750235  PMID: 19592620
6.  Association of variants of the interleukin-23 receptor (IL23R) gene with susceptibility to pediatric Crohn’s disease 
Background & Aims
Recently an association was demonstrated between the single nucleotide polymorphism (SNP), rs11209026, within the interleukin-23 receptor (IL23R) locus and Crohn’s disease (CD) as a consequence of a genome wide association study of this disease in adults. We examined the effects of this and other previously reported SNPs at this locus with respect to CD in children.
Utilizing data from our ongoing genome-wide association study in our cohort of 142 pediatric CD cases and 281 matched controls, we investigated the association of the previously reported SNPs at the IL23R locus with the childhood form of this disease.
Using a Fisher’s exact test, the minor allele frequency (MAF) of rs1120902 in the cases was 1.75% while it was 6.61% in controls, yielding a protective odds ratio (OR) of 0.25 (95% CI 0.10 – 0.65; one-sided P = 9.2×10−4). Furthermore, of all the SNPs previously reported, rs11209026 was the most strongly associated. A subsequent family-based association test (which is more resistant to population stratification) with 65 sets of trios derived from our initial patient cohort yielded significant association with rs11209026 in a transmission disequilibrium test (one-sided P=0.0017). In contrast, no association was detected to the CARD15 gene for the IBD phenotype.
The OR of the IL23R variant in our pediatric study is highly comparable with that reported previously in a non-Jewish adult IBD case-control cohort (OR=0.26). As such, variants in IL23R gene confer a similar magnitude of risk of CD to children as for their adult counterparts.
PMCID: PMC4287202  PMID: 17618837
IL23R; gene; association; Crohn’s Disease
7.  Genome-wide association and longitudinal analyses reveal genetic loci linking pubertal height growth, pubertal timing and childhood adiposity 
Human Molecular Genetics  2013;22(13):2735-2747.
The pubertal height growth spurt is a distinctive feature of childhood growth reflecting both the central onset of puberty and local growth factors. Although little is known about the underlying genetics, growth variability during puberty correlates with adult risks for hormone-dependent cancer and adverse cardiometabolic health. The only gene so far associated with pubertal height growth, LIN28B, pleiotropically influences childhood growth, puberty and cancer progression, pointing to shared underlying mechanisms. To discover genetic loci influencing pubertal height and growth and to place them in context of overall growth and maturation, we performed genome-wide association meta-analyses in 18 737 European samples utilizing longitudinally collected height measurements. We found significant associations (P < 1.67 × 10−8) at 10 loci, including LIN28B. Five loci associated with pubertal timing, all impacting multiple aspects of growth. In particular, a novel variant correlated with expression of MAPK3, and associated both with increased prepubertal growth and earlier menarche. Another variant near ADCY3-POMC associated with increased body mass index, reduced pubertal growth and earlier puberty. Whereas epidemiological correlations suggest that early puberty marks a pathway from rapid prepubertal growth to reduced final height and adult obesity, our study shows that individual loci associating with pubertal growth have variable longitudinal growth patterns that may differ from epidemiological observations. Overall, this study uncovers part of the complex genetic architecture linking pubertal height growth, the timing of puberty and childhood obesity and provides new information to pinpoint processes linking these traits.
PMCID: PMC3674797  PMID: 23449627
8.  GWAS of blood cell traits identifies novel associated loci and epistatic interactions in Caucasian and African-American children 
Human Molecular Genetics  2012;22(7):1457-1464.
Hematological traits are important clinical indicators, the genetic determinants of which have not been fully investigated. Common measures of hematological traits include red blood cell (RBC) count, hemoglobin concentration (HGB), hematocrit (HCT), mean corpuscular hemoglobin (MCH), MCH concentration (MCHC), mean corpuscular volume (MCV), platelet count (PLT) and white blood cell (WBC) count. We carried out a genome-wide association study of the eight common hematological traits among 7943 African-American children and 6234 Caucasian children. In African Americans, we report five novel associations of HBE1 variants with HCT and MCHC, the alpha-globin gene cluster variants with RBC and MCHC, and a variant at the ARHGEF3 locus with PLT, as well as replication of four previously reported loci at genome-wide significance. In Caucasians, we report a novel association of variants at the COPZ1 locus with PLT as well as replication of four previously reported loci at genome-wide significance. Extended analysis of an association observed between MCH and the alpha-globin gene cluster variants demonstrated independent effects and epistatic interaction at the locus, impacting the risk of iron deficiency anemia in African Americans with specific genotype states. In summary, we extend the understanding of genetic variants underlying hematological traits based on analyses in African-American children.
PMCID: PMC3657475  PMID: 23263863
9.  Transferability and Fine Mapping of Type 2 Diabetes Loci in African Americans 
Diabetes  2013;62(3):965-976.
Type 2 diabetes (T2D) disproportionally affects African Americans (AfA) but, to date, genetic variants identified from genome-wide association studies (GWAS) are primarily from European and Asian populations. We examined the single nucleotide polymorphism (SNP) and locus transferability of 40 reported T2D loci in six AfA GWAS consisting of 2,806 T2D case subjects with or without end-stage renal disease and 4,265 control subjects from the Candidate Gene Association Resource Plus Study. Our results revealed that seven index SNPs at the TCF7L2, KLF14, KCNQ1, ADCY5, CDKAL1, JAZF1, and GCKR loci were significantly associated with T2D (P < 0.05). The strongest association was observed at TCF7L2 rs7903146 (odds ratio [OR] 1.30; P = 6.86 × 10−8). Locus-wide analysis demonstrated significant associations (Pemp < 0.05) at regional best SNPs in the TCF7L2, KLF14, and HMGA2 loci as well as suggestive signals in KCNQ1 after correction for the effective number of SNPs at each locus. Of these loci, the regional best SNPs were in differential linkage disequilibrium (LD) with the index and adjacent SNPs. Our findings suggest that some loci discovered in prior reports affect T2D susceptibility in AfA with similar effect sizes. The reduced and differential LD pattern in AfA compared with European and Asian populations may facilitate fine mapping of causal variants at loci shared across populations.
PMCID: PMC3581206  PMID: 23193183
10.  A genome wide association study of plasma uric acid levels in obese cases and never-overweight controls 
Obesity (Silver Spring, Md.)  2013;21(9):E490-E494.
To identify plasma uric acid related genes in extremely obese and normal weight individuals using genome wide association studies (GWAS).
Design and Methods
Using genotypes from a GWAS focusing on obesity and thinness, we performed quantitative trait association analyses (PLINK) for plasma uric acid levels in 1,060 extremely obese individuals [body mass index (BMI) >35 kg/m2] and normal-weight controls (BMI<25kg/m2). In 961 samples with uric acid data, 924 were females.
Significant associations were found in SLC2A9 gene SNPs and plasma uric acid levels (rs6449213, P=3.15×10−12). DIP2C gene SNP rs877282 also reached genome wide significance(P=4,56×10−8). Weaker associations (P<1×10−5) were found in F5, PXDNL, FRAS1, LCORL, and MICAL2genes. Besides SLC2A9, 3 previously identified uric acid related genes ABCG2 (rs2622605, P=0.0026), SLC17A1 (rs3799344, P=0.0017), and RREB1 (rs1615495, P =0.00055) received marginal support in our study.
Two genes/chromosome regions reached genome wide association significance (P< 1× 10−7, 550K SNPs) in our GWAS : SLC2A9, the chromosome 2 60.1 Mb region (rs6723995), and the DIP2C gene region. Five other genes (F5, PXDNL, FRAS1, LCORL, and MICAL2) yielded P<1× 10−5. Four previous reported associations were replicated in our study, including SLC2A9, ABCG2, RREB, and SLC17A1.
PMCID: PMC3762924  PMID: 23703922
uric acid; genome wide association study; obesity
11.  Obesity-susceptibility loci and the tails of the pediatric BMI distribution 
Obesity (Silver Spring, Md.)  2013;21(6):1256-1260.
We aimed to determine if previously identified adult obesity susceptibility loci were associated uniformly with childhood BMI across the BMI distribution.
Design and Methods
Children were recruited through the Children's Hospital of Philadelphia (n=7225). Associations between the following loci and BMI were assessed using quantile regression: FTO (rs3751812), MC4R (rs12970134), TMEM18 (rs2867125), BDNF (rs6265), TNNI3K (rs1514175), NRXN3 (rs10146997), SEC16B (rs10913469), and GNPDA2 (rs13130484). BMI z-score (age and gender adjusted) was modeled as the dependent variable, and genotype risk score (sum of risk alleles carried at the 8 loci) was modeled as the independent variable.
Each additional increase in genotype risk score was associated with an increase in BMI z-score at the 5th, 15th, 25th, 50th, 75th, 85th and 95th BMI z-score percentiles by 0.04 (±0.02, p=0.08), 0.07 (±0.01, p=9.58 × 10-7), 0.07 (±0.01, p=1.10 × 10-8), 0.09 (±0.01, p=3.13 × 10-22), 0.11 (±0.01, p=1.35 × 10-25), 0.11 (±0.01, p=1.98 × 10-20), and 0.06 (±0.01, p=2.44 × 10-6), respectively. Each additional increase in genotype risk score was associated with an increase in mean BMI z-score by 0.08 (±0.01, p=4.27 × 10-20).
Obesity risk alleles were more strongly associated with increases in BMI z-score at the upper tail compared to the lower tail of the distribution.
PMCID: PMC3661695  PMID: 23408508
12.  A Meta-Analysis Identifies New Loci Associated with Body Mass index in Individuals of African Ancestry 
Monda, Keri L. | Chen, Gary K. | Taylor, Kira C. | Palmer, Cameron | Edwards, Todd L. | Lange, Leslie A. | Ng, Maggie C.Y. | Adeyemo, Adebowale A. | Allison, Matthew A. | Bielak, Lawrence F. | Chen, Guanji | Graff, Mariaelisa | Irvin, Marguerite R. | Rhie, Suhn K. | Li, Guo | Liu, Yongmei | Liu, Youfang | Lu, Yingchang | Nalls, Michael A. | Sun, Yan V. | Wojczynski, Mary K. | Yanek, Lisa R. | Aldrich, Melinda C. | Ademola, Adeyinka | Amos, Christopher I. | Bandera, Elisa V. | Bock, Cathryn H. | Britton, Angela | Broeckel, Ulrich | Cai, Quiyin | Caporaso, Neil E. | Carlson, Chris | Carpten, John | Casey, Graham | Chen, Wei-Min | Chen, Fang | Chen, Yii-Der I. | Chiang, Charleston W.K. | Coetzee, Gerhard A. | Demerath, Ellen | Deming-Halverson, Sandra L. | Driver, Ryan W. | Dubbert, Patricia | Feitosa, Mary F. | Freedman, Barry I. | Gillanders, Elizabeth M. | Gottesman, Omri | Guo, Xiuqing | Haritunians, Talin | Harris, Tamara | Harris, Curtis C. | Hennis, Anselm JM | Hernandez, Dena G. | McNeill, Lorna H. | Howard, Timothy D. | Howard, Barbara V. | Howard, Virginia J. | Johnson, Karen C. | Kang, Sun J. | Keating, Brendan J. | Kolb, Suzanne | Kuller, Lewis H. | Kutlar, Abdullah | Langefeld, Carl D. | Lettre, Guillaume | Lohman, Kurt | Lotay, Vaneet | Lyon, Helen | Manson, JoAnn E. | Maixner, William | Meng, Yan A. | Monroe, Kristine R. | Morhason-Bello, Imran | Murphy, Adam B. | Mychaleckyj, Josyf C. | Nadukuru, Rajiv | Nathanson, Katherine L. | Nayak, Uma | N’Diaye, Amidou | Nemesure, Barbara | Wu, Suh-Yuh | Leske, M. Cristina | Neslund-Dudas, Christine | Neuhouser, Marian | Nyante, Sarah | Ochs-Balcom, Heather | Ogunniyi, Adesola | Ogundiran, Temidayo O. | Ojengbede, Oladosu | Olopade, Olufunmilayo I. | Palmer, Julie R. | Ruiz-Narvaez, Edward A. | Palmer, Nicholette D. | Press, Michael F. | Rampersaud, Evandine | Rasmussen-Torvik, Laura J. | Rodriguez-Gil, Jorge L. | Salako, Babatunde | Schadt, Eric E. | Schwartz, Ann G. | Shriner, Daniel A. | Siscovick, David | Smith, Shad B. | Wassertheil-Smoller, Sylvia | Speliotes, Elizabeth K. | Spitz, Margaret R. | Sucheston, Lara | Taylor, Herman | Tayo, Bamidele O. | Tucker, Margaret A. | Van Den Berg, David J. | Velez Edwards, Digna R. | Wang, Zhaoming | Wiencke, John K. | Winkler, Thomas W. | Witte, John S. | Wrensch, Margaret | Wu, Xifeng | Yang, James J. | Levin, Albert M. | Young, Taylor R. | Zakai, Neil A. | Cushman, Mary | Zanetti, Krista A. | Zhao, Jing Hua | Zhao, Wei | Zheng, Yonglan | Zhou, Jie | Ziegler, Regina G. | Zmuda, Joseph M. | Fernandes, Jyotika K. | Gilkeson, Gary S. | Kamen, Diane L. | Hunt, Kelly J. | Spruill, Ida J. | Ambrosone, Christine B. | Ambs, Stefan | Arnett, Donna K. | Atwood, Larry | Becker, Diane M. | Berndt, Sonja I. | Bernstein, Leslie | Blot, William J. | Borecki, Ingrid B. | Bottinger, Erwin P. | Bowden, Donald W. | Burke, Gregory | Chanock, Stephen J. | Cooper, Richard S. | Ding, Jingzhong | Duggan, David | Evans, Michele K. | Fox, Caroline | Garvey, W. Timothy | Bradfield, Jonathan P. | Hakonarson, Hakon | Grant, Struan F.A. | Hsing, Ann | Chu, Lisa | Hu, Jennifer J. | Huo, Dezheng | Ingles, Sue A. | John, Esther M. | Jordan, Joanne M. | Kabagambe, Edmond K. | Kardia, Sharon L.R. | Kittles, Rick A. | Goodman, Phyllis J. | Klein, Eric A. | Kolonel, Laurence N. | Le Marchand, Loic | Liu, Simin | McKnight, Barbara | Millikan, Robert C. | Mosley, Thomas H. | Padhukasahasram, Badri | Williams, L. Keoki | Patel, Sanjay R. | Peters, Ulrike | Pettaway, Curtis A. | Peyser, Patricia A. | Psaty, Bruce M. | Redline, Susan | Rotimi, Charles N. | Rybicki, Benjamin A. | Sale, Michèle M. | Schreiner, Pamela J. | Signorello, Lisa B. | Singleton, Andrew B. | Stanford, Janet L. | Strom, Sara S. | Thun, Michael J. | Vitolins, Mara | Zheng, Wei | Moore, Jason H. | Williams, Scott M. | Zhu, Xiaofeng | Zonderman, Alan B. | Kooperberg, Charles | Papanicolaou, George | Henderson, Brian E. | Reiner, Alex P. | Hirschhorn, Joel N. | Loos, Ruth JF | North, Kari E. | Haiman, Christopher A.
Nature genetics  2013;45(6):690-696.
Genome-wide association studies (GWAS) have identified 36 loci associated with body mass index (BMI), predominantly in populations of European ancestry. We conducted a meta-analysis to examine the association of >3.2 million SNPs with BMI in 39,144 men and women of African ancestry, and followed up the most significant associations in an additional 32,268 individuals of African ancestry. We identified one novel locus at 5q33 (GALNT10, rs7708584, p=3.4×10−11) and another at 7p15 when combined with data from the Giant consortium (MIR148A/NFE2L3, rs10261878, p=1.2×10−10). We also found suggestive evidence of an association at a third locus at 6q16 in the African ancestry sample (KLHL32, rs974417, p=6.9×10−8). Thirty-two of the 36 previously established BMI variants displayed directionally consistent effect estimates in our GWAS (binomial p=9.7×10−7), of which five reached genome-wide significance. These findings provide strong support for shared BMI loci across populations as well as for the utility of studying ancestrally diverse populations.
PMCID: PMC3694490  PMID: 23583978
13.  New loci associated with birth weight identify genetic links between intrauterine growth and adult height and metabolism 
Horikoshi, Momoko | Yaghootkar, Hanieh | Mook-Kanamori, Dennis O. | Sovio, Ulla | Taal, H. Rob | Hennig, Branwen J. | Bradfield, Jonathan P. | St. Pourcain, Beate | Evans, David M. | Charoen, Pimphen | Kaakinen, Marika | Cousminer, Diana L. | Lehtimäki, Terho | Kreiner-Møller, Eskil | Warrington, Nicole M. | Bustamante, Mariona | Feenstra, Bjarke | Berry, Diane J. | Thiering, Elisabeth | Pfab, Thiemo | Barton, Sheila J. | Shields, Beverley M. | Kerkhof, Marjan | van Leeuwen, Elisabeth M. | Fulford, Anthony J. | Kutalik, Zoltán | Zhao, Jing Hua | den Hoed, Marcel | Mahajan, Anubha | Lindi, Virpi | Goh, Liang-Kee | Hottenga, Jouke-Jan | Wu, Ying | Raitakari, Olli T. | Harder, Marie N. | Meirhaeghe, Aline | Ntalla, Ioanna | Salem, Rany M. | Jameson, Karen A. | Zhou, Kaixin | Monies, Dorota M. | Lagou, Vasiliki | Kirin, Mirna | Heikkinen, Jani | Adair, Linda S. | Alkuraya, Fowzan S. | Al-Odaib, Ali | Amouyel, Philippe | Andersson, Ehm Astrid | Bennett, Amanda J. | Blakemore, Alexandra I.F. | Buxton, Jessica L. | Dallongeville, Jean | Das, Shikta | de Geus, Eco J. C. | Estivill, Xavier | Flexeder, Claudia | Froguel, Philippe | Geller, Frank | Godfrey, Keith M. | Gottrand, Frédéric | Groves, Christopher J. | Hansen, Torben | Hirschhorn, Joel N. | Hofman, Albert | Hollegaard, Mads V. | Hougaard, David M. | Hyppönen, Elina | Inskip, Hazel M. | Isaacs, Aaron | Jørgensen, Torben | Kanaka-Gantenbein, Christina | Kemp, John P. | Kiess, Wieland | Kilpeläinen, Tuomas O. | Klopp, Norman | Knight, Bridget A. | Kuzawa, Christopher W. | McMahon, George | Newnham, John P. | Niinikoski, Harri | Oostra, Ben A. | Pedersen, Louise | Postma, Dirkje S. | Ring, Susan M. | Rivadeneira, Fernando | Robertson, Neil R. | Sebert, Sylvain | Simell, Olli | Slowinski, Torsten | Tiesler, Carla M.T. | Tönjes, Anke | Vaag, Allan | Viikari, Jorma S. | Vink, Jacqueline M. | Vissing, Nadja Hawwa | Wareham, Nicholas J. | Willemsen, Gonneke | Witte, Daniel R. | Zhang, Haitao | Zhao, Jianhua | Wilson, James F. | Stumvoll, Michael | Prentice, Andrew M. | Meyer, Brian F. | Pearson, Ewan R. | Boreham, Colin A.G. | Cooper, Cyrus | Gillman, Matthew W. | Dedoussis, George V. | Moreno, Luis A | Pedersen, Oluf | Saarinen, Maiju | Mohlke, Karen L. | Boomsma, Dorret I. | Saw, Seang-Mei | Lakka, Timo A. | Körner, Antje | Loos, Ruth J.F. | Ong, Ken K. | Vollenweider, Peter | van Duijn, Cornelia M. | Koppelman, Gerard H. | Hattersley, Andrew T. | Holloway, John W. | Hocher, Berthold | Heinrich, Joachim | Power, Chris | Melbye, Mads | Guxens, Mònica | Pennell, Craig E. | Bønnelykke, Klaus | Bisgaard, Hans | Eriksson, Johan G. | Widén, Elisabeth | Hakonarson, Hakon | Uitterlinden, André G. | Pouta, Anneli | Lawlor, Debbie A. | Smith, George Davey | Frayling, Timothy M. | McCarthy, Mark I. | Grant, Struan F.A. | Jaddoe, Vincent W.V. | Jarvelin, Marjo-Riitta | Timpson, Nicholas J. | Prokopenko, Inga | Freathy, Rachel M.
Nature genetics  2012;45(1):76-82.
Birth weight within the normal range is associated with a variety of adult-onset diseases, but the mechanisms behind these associations are poorly understood1. Previous genome-wide association studies identified a variant in the ADCY5 gene associated both with birth weight and type 2 diabetes, and a second variant, near CCNL1, with no obvious link to adult traits2. In an expanded genome-wide association meta-analysis and follow-up study (up to 69,308 individuals of European descent from 43 studies), we have now extended the number of genome-wide significant loci to seven, accounting for a similar proportion of variance to maternal smoking. Five of the loci are known to be associated with other phenotypes: ADCY5 and CDKAL1 with type 2 diabetes; ADRB1 with adult blood pressure; and HMGA2 and LCORL with adult height. Our findings highlight genetic links between fetal growth and postnatal growth and metabolism.
PMCID: PMC3605762  PMID: 23202124
14.  Common variants at 6q22 and 17q21 are associated with intracranial volume 
Nature genetics  2012;44(5):539-544.
During aging, intracranial volume remains unchanged and represents maximally attained brain size, while various interacting biological phenomena lead to brain volume loss. Consequently, intracranial volume and brain volume in late life reflect different genetic influences. Our genome-wide association study in 8,175 community-dwelling elderly did not reveal any genome-wide significant associations (p<5*10−8) for brain volume. In contrast, intracranial volume was significantly associated with two loci: rs4273712 (p=3.4*10−11), a known height locus on chromosome 6q22, and rs9915547, tagging the inversion on chromosome 17q21 (p=1.5*10−12). We replicated the associations of these loci with intracranial volume in a separate sample of 1,752 older persons (p=1.1*10−3 for 6q22 and p=1.2*10−3 for 17q21). Furthermore, we also found suggestive associations of the 17q21 locus with head circumference in 10,768 children (mean age 14.5 months). Our data identify two loci associated with head size, with the inversion on 17q21 also likely involved in attaining maximal brain size.
PMCID: PMC3618290  PMID: 22504418
15.  A genome-wide association meta-analysis identifies new childhood obesity loci 
Bradfield, Jonathan P. | Taal, H. Rob | Timpson, Nicholas J. | Scherag, André | Lecoeur, Cecile | Warrington, Nicole M. | Hypponen, Elina | Holst, Claus | Valcarcel, Beatriz | Thiering, Elisabeth | Salem, Rany M. | Schumacher, Fredrick R. | Cousminer, Diana L. | Sleiman, Patrick M.A. | Zhao, Jianhua | Berkowitz, Robert I. | Vimaleswaran, Karani S. | Jarick, Ivonne | Pennell, Craig E. | Evans, David M. | St. Pourcain, Beate | Berry, Diane J. | Mook-Kanamori, Dennis O | Hofman, Albert | Rivadeinera, Fernando | Uitterlinden, André G. | van Duijn, Cornelia M. | van der Valk, Ralf J.P. | de Jongste, Johan C. | Postma, Dirkje S. | Boomsma, Dorret I. | Gauderman, William J. | Hassanein, Mohamed T. | Lindgren, Cecilia M. | Mägi, Reedik | Boreham, Colin A.G. | Neville, Charlotte E. | Moreno, Luis A. | Elliott, Paul | Pouta, Anneli | Hartikainen, Anna-Liisa | Li, Mingyao | Raitakari, Olli | Lehtimäki, Terho | Eriksson, Johan G. | Palotie, Aarno | Dallongeville, Jean | Das, Shikta | Deloukas, Panos | McMahon, George | Ring, Susan M. | Kemp, John P. | Buxton, Jessica L. | Blakemore, Alexandra I.F. | Bustamante, Mariona | Guxens, Mònica | Hirschhorn, Joel N. | Gillman, Matthew W. | Kreiner-Møller, Eskil | Bisgaard, Hans | Gilliland, Frank D. | Heinrich, Joachim | Wheeler, Eleanor | Barroso, Inês | O'Rahilly, Stephen | Meirhaeghe, Aline | Sørensen, Thorkild I.A. | Power, Chris | Palmer, Lyle J. | Hinney, Anke | Widen, Elisabeth | Farooqi, I. Sadaf | McCarthy, Mark I. | Froguel, Philippe | Meyre, David | Hebebrand, Johannes | Jarvelin, Marjo-Riitta | Jaddoe, Vincent W.V. | Smith, George Davey | Hakonarson, Hakon | Grant, Struan F.A.
Nature Genetics  2012;44(5):526-531.
Multiple genetic variants have been associated with adult obesity and a few with severe obesity in childhood; however, less progress has been made to establish genetic influences on common early-onset obesity. We performed a North American-Australian-European collaborative meta-analysis of fourteen studies consisting of 5,530 cases (≥95th percentile of body mass index (BMI)) and 8,318 controls (<50th percentile of BMI) of European ancestry. Taking forward the eight novel signals yielding association with P < 5×10−6 in to nine independent datasets (n = 2,818 cases and 4,083 controls) we observed two loci that yielded a genome wide significant combined P-value, namely near OLFM4 on 13q14 (rs9568856; P=1.82×10−9; OR=1.22) and within HOXB5 on 17q21 (rs9299; P=3.54×10−9; OR=1.14). Both loci continued to show association when including two extreme childhood obesity cohorts (n = 2,214 cases and 2,674 controls). Finally, these two loci yielded directionally consistent associations in the GIANT meta-analysis of adult BMI1.
PMCID: PMC3370100  PMID: 22484627
16.  Genome-wide association studies of adolescent idiopathic scoliosis suggest candidate susceptibility genes 
Human Molecular Genetics  2011;20(7):1456-1466.
Adolescent idiopathic scoliosis (AIS) is an unexplained and common spinal deformity seen in otherwise healthy children. Its pathophysiology is poorly understood despite intensive investigation. Although genetic underpinnings are clear, replicated susceptibility loci that could provide insight into etiology have not been forthcoming. To address these issues, we performed genome-wide association studies (GWAS) of ∼327 000 single nucleotide polymorphisms (SNPs) in 419 AIS families. We found strongest evidence of association with chromosome 3p26.3 SNPs in the proximity of the CHL1 gene (P < 8 × 10−8 for rs1400180). We genotyped additional chromosome 3p26.3 SNPs and tested replication in two follow-up case–control cohorts, obtaining strongest results when all three cohorts were combined (rs10510181 odds ratio = 1.49, 95% confidence interval = 1.29–1.73, P = 2.58 × 10−8), but these were not confirmed in a separate GWAS. CHL1 is of interest, as it encodes an axon guidance protein related to Robo3. Mutations in the Robo3 protein cause horizontal gaze palsy with progressive scoliosis (HGPPS), a rare disease marked by severe scoliosis. Other top associations in our GWAS were with SNPs in the DSCAM gene encoding an axon guidance protein in the same structural class with Chl1 and Robo3. We additionally found AIS associations with loci in CNTNAP2, supporting a previous study linking this gene with AIS. Cntnap2 is also of functional interest, as it interacts directly with L1 and Robo class proteins and participates in axon pathfinding. Our results suggest the relevance of axon guidance pathways in AIS susceptibility, although these findings require further study, particularly given the apparent genetic heterogeneity in this disease.
PMCID: PMC3049353  PMID: 21216876
17.  Genetic risk and a primary role for cell-mediated immune mechanisms in multiple sclerosis 
Sawcer, Stephen | Hellenthal, Garrett | Pirinen, Matti | Spencer, Chris C.A. | Patsopoulos, Nikolaos A. | Moutsianas, Loukas | Dilthey, Alexander | Su, Zhan | Freeman, Colin | Hunt, Sarah E. | Edkins, Sarah | Gray, Emma | Booth, David R. | Potter, Simon C. | Goris, An | Band, Gavin | Oturai, Annette Bang | Strange, Amy | Saarela, Janna | Bellenguez, Céline | Fontaine, Bertrand | Gillman, Matthew | Hemmer, Bernhard | Gwilliam, Rhian | Zipp, Frauke | Jayakumar, Alagurevathi | Martin, Roland | Leslie, Stephen | Hawkins, Stanley | Giannoulatou, Eleni | D’alfonso, Sandra | Blackburn, Hannah | Boneschi, Filippo Martinelli | Liddle, Jennifer | Harbo, Hanne F. | Perez, Marc L. | Spurkland, Anne | Waller, Matthew J | Mycko, Marcin P. | Ricketts, Michelle | Comabella, Manuel | Hammond, Naomi | Kockum, Ingrid | McCann, Owen T. | Ban, Maria | Whittaker, Pamela | Kemppinen, Anu | Weston, Paul | Hawkins, Clive | Widaa, Sara | Zajicek, John | Dronov, Serge | Robertson, Neil | Bumpstead, Suzannah J. | Barcellos, Lisa F. | Ravindrarajah, Rathi | Abraham, Roby | Alfredsson, Lars | Ardlie, Kristin | Aubin, Cristin | Baker, Amie | Baker, Katharine | Baranzini, Sergio E. | Bergamaschi, Laura | Bergamaschi, Roberto | Bernstein, Allan | Berthele, Achim | Boggild, Mike | Bradfield, Jonathan P. | Brassat, David | Broadley, Simon A. | Buck, Dorothea | Butzkueven, Helmut | Capra, Ruggero | Carroll, William M. | Cavalla, Paola | Celius, Elisabeth G. | Cepok, Sabine | Chiavacci, Rosetta | Clerget-Darpoux, Françoise | Clysters, Katleen | Comi, Giancarlo | Cossburn, Mark | Cournu-Rebeix, Isabelle | Cox, Mathew B. | Cozen, Wendy | Cree, Bruce A.C. | Cross, Anne H. | Cusi, Daniele | Daly, Mark J. | Davis, Emma | de Bakker, Paul I.W. | Debouverie, Marc | D’hooghe, Marie Beatrice | Dixon, Katherine | Dobosi, Rita | Dubois, Bénédicte | Ellinghaus, David | Elovaara, Irina | Esposito, Federica | Fontenille, Claire | Foote, Simon | Franke, Andre | Galimberti, Daniela | Ghezzi, Angelo | Glessner, Joseph | Gomez, Refujia | Gout, Olivier | Graham, Colin | Grant, Struan F.A. | Guerini, Franca Rosa | Hakonarson, Hakon | Hall, Per | Hamsten, Anders | Hartung, Hans-Peter | Heard, Rob N. | Heath, Simon | Hobart, Jeremy | Hoshi, Muna | Infante-Duarte, Carmen | Ingram, Gillian | Ingram, Wendy | Islam, Talat | Jagodic, Maja | Kabesch, Michael | Kermode, Allan G. | Kilpatrick, Trevor J. | Kim, Cecilia | Klopp, Norman | Koivisto, Keijo | Larsson, Malin | Lathrop, Mark | Lechner-Scott, Jeannette S. | Leone, Maurizio A. | Leppä, Virpi | Liljedahl, Ulrika | Bomfim, Izaura Lima | Lincoln, Robin R. | Link, Jenny | Liu, Jianjun | Lorentzen, Åslaug R. | Lupoli, Sara | Macciardi, Fabio | Mack, Thomas | Marriott, Mark | Martinelli, Vittorio | Mason, Deborah | McCauley, Jacob L. | Mentch, Frank | Mero, Inger-Lise | Mihalova, Tania | Montalban, Xavier | Mottershead, John | Myhr, Kjell-Morten | Naldi, Paola | Ollier, William | Page, Alison | Palotie, Aarno | Pelletier, Jean | Piccio, Laura | Pickersgill, Trevor | Piehl, Fredrik | Pobywajlo, Susan | Quach, Hong L. | Ramsay, Patricia P. | Reunanen, Mauri | Reynolds, Richard | Rioux, John D. | Rodegher, Mariaemma | Roesner, Sabine | Rubio, Justin P. | Rückert, Ina-Maria | Salvetti, Marco | Salvi, Erika | Santaniello, Adam | Schaefer, Catherine A. | Schreiber, Stefan | Schulze, Christian | Scott, Rodney J. | Sellebjerg, Finn | Selmaj, Krzysztof W. | Sexton, David | Shen, Ling | Simms-Acuna, Brigid | Skidmore, Sheila | Sleiman, Patrick M.A. | Smestad, Cathrine | Sørensen, Per Soelberg | Søndergaard, Helle Bach | Stankovich, Jim | Strange, Richard C. | Sulonen, Anna-Maija | Sundqvist, Emilie | Syvänen, Ann-Christine | Taddeo, Francesca | Taylor, Bruce | Blackwell, Jenefer M. | Tienari, Pentti | Bramon, Elvira | Tourbah, Ayman | Brown, Matthew A. | Tronczynska, Ewa | Casas, Juan P. | Tubridy, Niall | Corvin, Aiden | Vickery, Jane | Jankowski, Janusz | Villoslada, Pablo | Markus, Hugh S. | Wang, Kai | Mathew, Christopher G. | Wason, James | Palmer, Colin N.A. | Wichmann, H-Erich | Plomin, Robert | Willoughby, Ernest | Rautanen, Anna | Winkelmann, Juliane | Wittig, Michael | Trembath, Richard C. | Yaouanq, Jacqueline | Viswanathan, Ananth C. | Zhang, Haitao | Wood, Nicholas W. | Zuvich, Rebecca | Deloukas, Panos | Langford, Cordelia | Duncanson, Audrey | Oksenberg, Jorge R. | Pericak-Vance, Margaret A. | Haines, Jonathan L. | Olsson, Tomas | Hillert, Jan | Ivinson, Adrian J. | De Jager, Philip L. | Peltonen, Leena | Stewart, Graeme J. | Hafler, David A. | Hauser, Stephen L. | McVean, Gil | Donnelly, Peter | Compston, Alastair
Nature  2011;476(7359):214-219.
Multiple sclerosis (OMIM 126200) is a common disease of the central nervous system in which the interplay between inflammatory and neurodegenerative processes typically results in intermittent neurological disturbance followed by progressive accumulation of disability.1 Epidemiological studies have shown that genetic factors are primarily responsible for the substantially increased frequency of the disease seen in the relatives of affected individuals;2,3 and systematic attempts to identify linkage in multiplex families have confirmed that variation within the Major Histocompatibility Complex (MHC) exerts the greatest individual effect on risk.4 Modestly powered Genome-Wide Association Studies (GWAS)5-10 have enabled more than 20 additional risk loci to be identified and have shown that multiple variants exerting modest individual effects play a key role in disease susceptibility.11 Most of the genetic architecture underlying susceptibility to the disease remains to be defined and is anticipated to require the analysis of sample sizes that are beyond the numbers currently available to individual research groups. In a collaborative GWAS involving 9772 cases of European descent collected by 23 research groups working in 15 different countries, we have replicated almost all of the previously suggested associations and identified at least a further 29 novel susceptibility loci. Within the MHC we have refined the identity of the DRB1 risk alleles and confirmed that variation in the HLA-A gene underlies the independent protective effect attributable to the Class I region. Immunologically relevant genes are significantly over-represented amongst those mapping close to the identified loci and particularly implicate T helper cell differentiation in the pathogenesis of multiple sclerosis.
PMCID: PMC3182531  PMID: 21833088
multiple sclerosis; GWAS; genetics
18.  Association of RASGRP1 with type 1 diabetes is revealed by combined follow-up of two genome-wide studies 
Journal of Medical Genetics  2009;46(8):553-554.
The two genome-wide association studies published by us and by the Wellcome Trust Case-Control Consortium (WTCCC) revealed a number of novel loci but neither had the statistical power to elucidate all of the genetic components of type 1 diabetes risk, a task for which larger effective sample sizes are needed.
We analyzed data from two sources: 1) The previously published second stage of our study, with a total sample size of the two stages consisting of 1,046 Canadian case-parent trios and 538 multiplex families with 929 affected offspring from the Type 1 Diabetes Genetics Consortium (T1DGC); 2) The RR2 project of the T1DGC, which genotyped 4,417 individuals from 1,062 non-overlapping families, including 2,059 affected individuals (mostly sibling pairs) for the 1,536 markers with the highest statistical significance for type 1 diabetes in the WTCCC results.
One locus, mapping to an LD block at chr15q14, reached statistical significance by combining results from two markers (rs17574546 and rs7171171) in perfect linkage disequilibrium (LD) with each other (r2=1). We obtained a joint p value of 1.3 ×10−6, which exceeds by an order of magnitude the conservative threshold of 3.26×10−5 obtained by correcting for the 1,536 SNPs tested in our study. Meta-analysis with the original WTCCC genome-wide data produced a p value of 5.83×10−9.
A novel type 1 diabetes locus was discovered. It involves RASGRP1, a gene known to play a crucial role in thymocyte differentiation and TCR signaling by activating the Ras signaling pathway.
PMCID: PMC3272492  PMID: 19465406
Etiology; Genetic susceptibility; Type 1 diabetes; RASGRP1
19.  Large Copy-Number Variations Are Enriched in Cases With Moderate to Extreme Obesity 
Diabetes  2010;59(10):2690-2694.
Obesity is an increasingly common disorder that predisposes to several medical conditions, including type 2 diabetes. We investigated whether large and rare copy-number variations (CNVs) differentiate moderate to extreme obesity from never-overweight control subjects.
Using single nucleotide polymorphism (SNP) arrays, we performed a genome-wide CNV survey on 430 obese case subjects (BMI >35 kg/m2) and 379 never-overweight control subjects (BMI <25 kg/m2). All subjects were of European ancestry and were genotyped on the Illumina HumanHap550 arrays with ∼550,000 SNP markers. The CNV calls were generated by PennCNV software.
CNVs >1 Mb were found to be overrepresented in case versus control subjects (odds ratio [OR] = 1.5 [95% CI 0.5–5]), and CNVs >2 Mb were present in 1.3% of the case subjects but were absent in control subjects (OR = infinity [95% CI 1.2–infinity]). When focusing on rare deletions that disrupt genes, even more pronounced effect sizes are observed (OR = 2.7 [95% CI 0.5–27.1] for CNVs >1 Mb). Interestingly, obese case subjects who carry these large CNVs have moderately high BMI and do not appear to be extreme cases. Several CNVs disrupt known candidate genes for obesity, such as a 3.3-Mb deletion disrupting NAP1L5 and a 2.1-Mb deletion disrupting UCP1 and IL15.
Our results suggest that large CNVs, especially rare deletions, confer risk of obesity in patients with moderate obesity and that genes impacted by large CNVs represent intriguing candidates for obesity that warrant further study.
PMCID: PMC3279563  PMID: 20622171
20.  Comparative genetic analysis of inflammatory bowel disease and type 1 diabetes implicates multiple loci with opposite effects 
Human Molecular Genetics  2010;19(10):2059-2067.
Inflammatory bowel disease, including Crohn's disease (CD) and ulcerative colitis (UC), and type 1 diabetes (T1D) are autoimmune diseases that may share common susceptibility pathways. We examined known susceptibility loci for these diseases in a cohort of 1689 CD cases, 777 UC cases, 989 T1D cases and 6197 shared control subjects of European ancestry, who were genotyped by the Illumina HumanHap550 SNP arrays. We identified multiple previously unreported or unconfirmed disease associations, including known CD loci (ICOSLG and TNFSF15) and T1D loci (TNFAIP3) that confer UC risk, known UC loci (HERC2 and IL26) that confer T1D risk and known UC loci (IL10 and CCNY) that confer CD risk. Additionally, we show that T1D risk alleles residing at the PTPN22, IL27, IL18RAP and IL10 loci protect against CD. Furthermore, the strongest risk alleles for T1D within the major histocompatibility complex (MHC) confer strong protection against CD and UC; however, given the multi-allelic nature of the MHC haplotypes, sequencing of the MHC locus will be required to interpret this observation. These results extend our current knowledge on genetic variants that predispose to autoimmunity, and suggest that many loci involved in autoimmunity may be under a balancing selection due to antagonistic pleiotropic effect. Our analysis implies that variants with opposite effects on different diseases may facilitate the maintenance of common susceptibility alleles in human populations, making autoimmune diseases especially amenable to genetic dissection by genome-wide association studies.
PMCID: PMC2860894  PMID: 20176734
21.  Association Between a High-Risk Autism Locus on 5p14 and Social Communication Spectrum Phenotypes in the General Population 
The American journal of psychiatry  2010;167(11):1364-1372.
Recent genome-wide analysis identified a genetic variant on 5p14.1 (rs4307059), which is associated with risk for autism spectrum disorder. This study investigated whether rs4307059 also operates as a quantitative trait locus underlying a broader autism phenotype in the general population, focusing specifically on the social communication aspect of the spectrum.
Study participants were 7,313 children from the Avon Longitudinal Study of Parents and Children. Single-trait and joint-trait genotype associations were investigated for 29 measures related to language and communication, verbal intelligence, social interaction, and behavioral adjustment, assessed between ages 3 and 12 years. Analyses were performed in one-sided or directed mode and adjusted for multiple testing, trait interrelatedness, and random genotype dropout.
Single phenotype analyses showed that an increased load of rs4307059 risk allele is associated with stereotyped conversation and lower pragmatic communication skills, as measured by the Children's Communication Checklist (at a mean age of 9.7 years). In addition a trend toward a higher frequency of identification of special educational needs (at a mean age of 11.8 years) was observed. Variation at rs4307059 was also associated with the phenotypic profile of studied traits. This joint signal was fully explained neither by single-trait associations nor by overall behavioral adjustment problems but suggested a combined effect, which manifested through multiple subthreshold social, communicative, and cognitive impairments.
Our results suggest that common variation at 5p14.1 is associated with social communication spectrum phenotypes in the general population and support the role of rs4307059 as a quantitative trait locus for autism spectrum disorder.
PMCID: PMC3008767  PMID: 20634369
22.  The role of obesity-associated loci identified in genome wide association studies in the determination of pediatric BMI 
Obesity (Silver Spring, Md.)  2009;17(12):2254-2257.
The prevalence of obesity in children and adults in the United States has increased dramatically over the past decade. Besides environmental factors, genetic factors are known to play an important role in the pathogenesis of obesity. A number of genetic determinants of adult BMI have already been established through genome wide association studies. In this study, we examined 25 single nucleotide polymorphisms (SNPs) corresponding to thirteen previously reported genomic loci in 6,078 children with measures of BMI. Fifteen of these SNPs yielded at least nominally significant association to BMI, representing nine different loci including INSIG2, FTO, MC4R, TMEM18, GNPDA2, NEGR1, BDNF, KCTD15 and 1q25. Other loci revealed no evidence for association, namely at MTCH2, SH2B1, 12q13 and 3q27. For the 15 associated variants, the genotype score explained 1.12% of the total variation for BMI z-score. We conclude that among thirteen loci that have been reported to associate with adult BMI, at least nine also contribute to the determination of BMI in childhood as demonstrated by their associations in our pediatric cohort.
PMCID: PMC2860782  PMID: 19478790
23.  Investigation of the locus near MC4R with childhood obesity in Americans of European and African ancestry 
Obesity (Silver Spring, Md.)  2009;17(7):1461-1465.
Recently a modest, but consistently, replicated association was demonstrated between obesity and the single nucleotide polymorphism (SNP), rs17782313, 3’ of the MC4R locus as a consequence of a meta-analysis of genome wide association (GWA) studies of the disease in Caucasian populations. We investigated the association in the context of the childhood form of the disease utilizing data from our ongoing GWA study in a cohort of 728 European American (EA) obese children (BMI ≥ 95th percentile) and 3,960 EA controls (BMI < 95th percentile), as well as 1,008 African American (AA) obese children and 2,715 AA controls. rs571312, rs10871777 and rs476828 (perfect surrogates for rs17782313) yielded odds ratios in the EA cohort of 1.142 (P = 0.045), 1.137 (P = 0.054) and 1.145 (P = 0.042); however, there was no significant association with these SNPs in the AA cohort. When investigating all thirty SNPs present on the Illumina BeadChip at this locus, again there was no evidence for association in AA cases when correcting for the number of tests employed. As such, variants 3’ to the MC4R locus present on the genotyping platform utilized confer a similar magnitude of risk of obesity in Caucasian children as to their adult Caucasian counterparts but this observation did not extend to African Americans.
PMCID: PMC2860794  PMID: 19265794
24.  SNP array mapping of 20p deletions: Genotypes, Phenotypes and Copy Number Variation 
Human mutation  2009;30(3):371-378.
The use of array technology to define chromosome deletions and duplications is bringing us closer to establishing a genotype/phenotype map of genomic copy number alterations. We studied 21 patients and 5 relatives with deletions of the short arm of chromosome 20 using the Illumina HumanHap550 SNP array to 1) more accurately determine the deletion sizes, 2) identify and compare breakpoints, 3) establish genotype/phenotype correlations and 4) investigate the use of the HumanHap550 platform for analysis of chromosome deletions. Deletions ranged from 95kb to 14.62Mb, and all of the breakpoints were unique. Eleven patients had deletions between 95kb and 4Mb and these individuals had normal development, with no anomalies outside of those associated with Alagille syndrome. The proximal and distal boundaries of these eleven deletions constitute a 5.4MB region, and we propose that haploinsufficiency for only 1 of the 12 genes in this region causes phenotypic abnormalities. This defines the JAG1 associated critical region, in which deletions do not confer findings other than those associated with Alagille syndrome. The other 10 patients had deletions between 3.28Mb and 14.62Mb, which extended outside the critical region, and notably, all of these patients, had developmental delay. This group had other findings such as autism, scoliosis and bifid uvula. We identified 47 additional polymorphic genome-wide copy number variants (>20 SNPs), with 0–5 variants called per patient. Deletions of the short arm of chromosome 20 are associated with relatively mild and limited clinical anomalies. The use of SNP arrays provides accurate high-resolution definition of genomic abnormalities.
PMCID: PMC2650004  PMID: 19058200
SNP array analysis; 20p deletion; copy number variants; Alagille syndrome; haploinsufficiency; JAG1
25.  Follow-Up Analysis of Genome-Wide Association Data Identifies Novel Loci for Type 1 Diabetes 
Diabetes  2009;58(1):290-295.
OBJECTIVE—Two recent genome-wide association (GWA) studies have revealed novel loci for type 1 diabetes, a common multifactorial disease with a strong genetic component. To fully utilize the GWA data that we had obtained by genotyping 563 type 1 diabetes probands and 1,146 control subjects, as well as 483 case subject–parent trios, using the Illumina HumanHap550 BeadChip, we designed a full stage 2 study to capture other possible association signals.
RESEARCH DESIGN AND METHODS—From our existing datasets, we selected 982 markers with P < 0.05 in both GWA cohorts. Genotyping these in an independent set of 636 nuclear families with 974 affected offspring revealed 75 markers that also had P < 0.05 in this third cohort. Among these, six single nucleotide polymorphisms in five novel loci also had P < 0.05 in the Wellcome Trust Case-Control Consortium dataset and were further tested in 1,303 type 1 diabetes probands from the Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications (DCCT/EDIC) plus 1,673 control subjects.
RESULTS—Two markers (rs9976767 and rs3757247) remained significant after adjusting for the number of tests in this last cohort; they reside in UBASH3A (OR 1.16; combined P = 2.33 × 10−8) and BACH2 (1.13; combined P = 1.25 × 10−6).
CONCLUSIONS—Evaluation of a large number of statistical GWA candidates in several independent cohorts has revealed additional loci that are associated with type 1 diabetes. The two genes at these respective loci, UBASH3A and BACH2, are both biologically relevant to autoimmunity.
PMCID: PMC2606889  PMID: 18840781

Results 1-25 (27)