Search tips
Search criteria

Results 1-5 (5)

Clipboard (0)
Year of Publication
Document Types
1.  Integrative genomics identifies LMO1 as a neuroblastoma oncogene 
Nature  2010;469(7329):216-220.
Neuroblastoma is a childhood cancer of the sympathetic nervous system that accounts for approximately 10% of all paediatric oncology deaths1,2. To identify genetic risk factors for neuroblastoma, we performed a genome-wide association study (GWAS) on 2,251 patients and 6,097 control subjects of European ancestry from four case series. Here we report a significant association within LIM domain only 1 (LMO1) at 11p15.4 (rs110419, combined P = 5.2 × 10−16, odds ratio of risk allele = 1.34 (95% confidence interval 1.25–1.44)). The signal was enriched in the subset of patients with the most aggressive form of the disease. LMO1 encodes a cysteine-rich transcriptional regulator, and its paralogues (LMO2, LMO3 and LMO4) have each been previously implicated in cancer. In parallel, we analysed genome-wide DNA copy number alterations in 701 primary tumours. We found that the LMO1 locus was aberrant in 12.4% through a duplication event, and that this event was associated with more advanced disease (P < 0.0001) and survival (P = 0.041). The germline single nucleotide polymorphism (SNP) risk alleles and somatic copy number gains were associated with increased LMO1 expression in neuroblastoma cell lines and primary tumours, consistent with a gain-of-function role in tumorigenesis. Short hairpin RNA (shRNA)-mediated depletion of LMO1 inhibited growth of neuroblastoma cells with high LMO1 expression, whereas forced expression of LMO1 in neuroblastoma cells with low LMO1 expression enhanced proliferation. These data show that common polymorphisms at the LMO1 locus are strongly associated with susceptibility to developing neuroblastoma, but also may influence the likelihood of further somatic alterations at this locus, leading to malignant progression.
PMCID: PMC3320515  PMID: 21124317
2.  Association of RASGRP1 with type 1 diabetes is revealed by combined follow-up of two genome-wide studies 
Journal of Medical Genetics  2009;46(8):553-554.
The two genome-wide association studies published by us and by the Wellcome Trust Case-Control Consortium (WTCCC) revealed a number of novel loci but neither had the statistical power to elucidate all of the genetic components of type 1 diabetes risk, a task for which larger effective sample sizes are needed.
We analyzed data from two sources: 1) The previously published second stage of our study, with a total sample size of the two stages consisting of 1,046 Canadian case-parent trios and 538 multiplex families with 929 affected offspring from the Type 1 Diabetes Genetics Consortium (T1DGC); 2) The RR2 project of the T1DGC, which genotyped 4,417 individuals from 1,062 non-overlapping families, including 2,059 affected individuals (mostly sibling pairs) for the 1,536 markers with the highest statistical significance for type 1 diabetes in the WTCCC results.
One locus, mapping to an LD block at chr15q14, reached statistical significance by combining results from two markers (rs17574546 and rs7171171) in perfect linkage disequilibrium (LD) with each other (r2=1). We obtained a joint p value of 1.3 ×10−6, which exceeds by an order of magnitude the conservative threshold of 3.26×10−5 obtained by correcting for the 1,536 SNPs tested in our study. Meta-analysis with the original WTCCC genome-wide data produced a p value of 5.83×10−9.
A novel type 1 diabetes locus was discovered. It involves RASGRP1, a gene known to play a crucial role in thymocyte differentiation and TCR signaling by activating the Ras signaling pathway.
PMCID: PMC3272492  PMID: 19465406
Etiology; Genetic susceptibility; Type 1 diabetes; RASGRP1
3.  Common genetic variants on 5p14.1 associate with autism spectrum disorders 
Nature  2009;459(7246):528-533.
Autism spectrum disorders (ASDs) represent a group of childhood neurodevelopmental and neuropsychiatric disorders characterized by deficits in verbal communication, impairment of social interaction, and restricted and repetitive patterns of interests and behaviour. To identify common genetic risk factors underlying ASDs, here we present the results of genome-wide association studies on a cohort of 780 families (3,101 subjects) with affected children, and a second cohort of 1,204 affected subjects and 6,491 control subjects, all of whom were of European ancestry. Six single nucleotide polymorphisms between cadherin 10 (CDH10) and cadherin 9 (CDH9)—two genes encoding neuronal cell-adhesion molecules—revealed strong association signals, with the most significant SNP being rs4307059 (P = 3.4 × 10−8, odds ratio = 1.19). These signals were replicated in two independent cohorts, with combined P values ranging from 7.4 × 10−8 to 2.1 × 10−10. Our results implicate neuronal cell-adhesion molecules in the pathogenesis of ASDs, and represent, to our knowledge, the first demonstration of genome-wide significant association of common variants with susceptibility to ASDs.
PMCID: PMC2943511  PMID: 19404256
4.  Association Analysis of Type 2 Diabetes Loci in Type 1 Diabetes 
Diabetes  2008;57(7):1983-1986.
OBJECTIVE—To search for a possible association of type 1 diabetes with 10 validated type 2 diabetes loci, i.e., PPARG, KCNJ11, WFS1, HNF1B, IDE/HHEX, SLC30A8, CDKAL1, CDKN2A/B, IGF2BP2, and FTO/RPGRIP1L.
RESEARCH DESIGN AND METHODS—Two European population samples were studied: 1) one case-control cohort of 514 type 1 diabetic subjects and 2,027 control subjects and 2) one family cohort of 483 complete type 1 diabetic case-parent trios (total 997 affected). A total of 13 tag single nucleotide polymorphisms (SNPs) from the 10 type 2 diabetes loci were analyzed for type 1 diabetes association.
RESULTS—No association of type 1 diabetes was found with any of the 10 type 2 diabetes loci, and no age-at-onset effect was detected. By combined analysis using the Wellcome Trust Case-Control Consortium type 1 diabetes data, SNP rs1412829 in the CDKN2A/B locus bordered on significance (P = 0.039) (odds ratio 0.929 [95% CI 0.867–0.995]), which did not reach the statistical significance threshold adjusted for 13 tests (α = 0.00385).
CONCLUSIONS—This study suggests that the type 2 diabetes loci do not play any obvious role in type 1 diabetes genetic susceptibility. The distinct molecular mechanisms of the two diseases highlighted the importance of differentiation diagnosis and different treatment principles.
PMCID: PMC2453613  PMID: 18426861
5.  Concept, Design and Implementation of a Cardiovascular Gene-Centric 50 K SNP Array for Large-Scale Genomic Association Studies 
PLoS ONE  2008;3(10):e3583.
A wealth of genetic associations for cardiovascular and metabolic phenotypes in humans has been accumulating over the last decade, in particular a large number of loci derived from recent genome wide association studies (GWAS). True complex disease-associated loci often exert modest effects, so their delineation currently requires integration of diverse phenotypic data from large studies to ensure robust meta-analyses. We have designed a gene-centric 50 K single nucleotide polymorphism (SNP) array to assess potentially relevant loci across a range of cardiovascular, metabolic and inflammatory syndromes. The array utilizes a “cosmopolitan” tagging approach to capture the genetic diversity across ∼2,000 loci in populations represented in the HapMap and SeattleSNPs projects. The array content is informed by GWAS of vascular and inflammatory disease, expression quantitative trait loci implicated in atherosclerosis, pathway based approaches and comprehensive literature searching. The custom flexibility of the array platform facilitated interrogation of loci at differing stringencies, according to a gene prioritization strategy that allows saturation of high priority loci with a greater density of markers than the existing GWAS tools, particularly in African HapMap samples. We also demonstrate that the IBC array can be used to complement GWAS, increasing coverage in high priority CVD-related loci across all major HapMap populations. DNA from over 200,000 extensively phenotyped individuals will be genotyped with this array with a significant portion of the generated data being released into the academic domain facilitating in silico replication attempts, analyses of rare variants and cross-cohort meta-analyses in diverse populations. These datasets will also facilitate more robust secondary analyses, such as explorations with alternative genetic models, epistasis and gene-environment interactions.
PMCID: PMC2571995  PMID: 18974833

Results 1-5 (5)