PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (31)
 

Clipboard (0)
None
Journals
Year of Publication
more »
Document Types
1.  The epigenome of synovial fibroblasts: an underestimated therapeutic target in rheumatoid arthritis 
Perturbed epigenetic landscape and deregulated microRNA networks are central to the permanent activation and aggressiveness of synovial fibroblasts in rheumatoid arthritis. Current anti-cytokine therapies, although effectively halting synovitis, cannot reverse the stably activated destructive phenotype of rheumatoid arthritis synovial fibroblasts, offering rather limited protection against ongoing joint destruction in rheumatoid arthritis. Targeting the deregulated epigenome of rheumatoid arthritis synovial fibroblasts is key to developing joint-protective strategies in rheumatoid arthritis. To date, different pathogenic mechanisms have been identified that can profoundly impact the epigenetic derangements in rheumatoid arthritis synovial fibroblasts, including increased consumption of S-adenosylmethionine, a principal methyl donor in DNA methylation reactions, together with deregulation of crucial DNA- and histone-modifying enzymes. Re-establishing globally disturbed DNA methylation patterns in rheumatoid arthritis synovial fibroblasts by supplementing S-adenosylmethionine while preventing its leakage into polyamine cycles may be a promising therapeutic strategy in rheumatoid arthritis and the first epigenetic treatment to target rheumatoid arthritis synovial fibroblasts at the scene of the crime. Given the dynamic nature and reversibility of epigenetic modifications, their involvement in human diseases and recent perspectives on epigenetic therapies in cancer, epigenetic targeting of rheumatoid arthritis synovial fibroblasts should be within future reach.
doi:10.1186/ar4596
PMCID: PMC4075141  PMID: 25165988
2.  The Mesenchymal Stem Cell Marker CD248 (Endosialin) Is a Negative Regulator of Bone Formation in Mice 
Arthritis and rheumatism  2012;64(10):3334-3343.
Objective
CD248 (tumor endothelial marker 1/endosialin) is found on stromal cells and is highly expressed during malignancy and inflammation. Studies have shown a reduction in inflammatory arthritis in CD248-knockout (CD248−/−) mice. The aim of the present study was to investigate the functional effect of genetic deletion of CD248 on bone mass.
Methods
Western blotting, polymerase chain reaction, and immunofluorescence were used to investigate the expression of CD248 in humans and mice. Micro-computed tomography and the 3-point bending test were used to measure bone parameters and mechanical properties of the tibiae of 10-week-old wild-type (WT) or CD248−/− mice. Human and mouse primary osteoblasts were cultured in medium containing 10 mM β-glycerophosphate and 50 μg/ml ascorbic acid to induce mineralization, and then treated with platelet-derived growth factor BB (PDGF-BB). The mineral apposition rate in vivo was calculated by identifying newly formed bone via calcein labeling.
Results
Expression of CD248 was seen in human and mouse osteoblasts, but not osteoclasts. CD248−/− mouse tibiae had higher bone mass and superior mechanical properties (increased load required to cause fracture) compared to WT mice. Primary osteoblasts from CD248−/− mice induced increased mineralization in vitro and produced increased bone over 7 days in vivo. There was no decrease in bone mineralization and no increase in proliferation of osteoblasts in response to stimulation with PDGF-BB, which could be attributed to a defect in PDGF signal transduction in the CD248−/− mice.
Conclusion
There is an unmet clinical need to address rheumatoid arthritis–associated bone loss. Genetic deletion of CD248 in mice results in high bone mass due to increased osteoblast-mediated bone formation, suggesting that targeting CD248 in rheumatoid arthritis may have the effect of increasing bone mass in addition to the previously reported effect of reducing inflammation.
doi:10.1002/art.34556
PMCID: PMC4209224  PMID: 22674221
3.  Exposure to Mimivirus Collagen Promotes Arthritis 
Journal of Virology  2014;88(2):838-845.
Collagens, the most abundant proteins in animals, also occur in some recently described nucleocytoplasmic large DNA viruses such as Mimiviridae, which replicate in amoebae. To clarify the impact of viral collagens on the immune response of animals exposed to Mimiviridae, we have investigated the localization of collagens in Acanthamoeba polyphaga mimivirus particles and the response of mice to immunization with mimivirus particles. Using protein biotinylation, we have first shown that viral collagen encoded by open reading frame L71 is present at the surface of mimivirus particles. Exposure to mimivirus collagens elicited the production of anti-collagen antibodies in DBA/1 mice immunized intradermally with mimivirus protein extracts. This antibody response also targeted mouse collagen type II and was accompanied by T-cell reactivity to collagen and joint inflammation, as observed in collagen-induced arthritis following immunization of mice with bovine collagen type II. The broad distribution of nucleocytoplasmic large DNA viruses in the environment suggests that humans are constantly exposed to such large virus particles. A survey of blood sera from healthy human subjects and from rheumatoid arthritis patients indeed demonstrated that 30% of healthy-subject and 36% of rheumatoid arthritis sera recognized the major mimivirus capsid protein L425. Moreover, whereas 6% of healthy-subject sera recognized the mimivirus collagen protein L71, 22% of rheumatoid arthritis sera were positive for mimivirus L71. Accordingly, our study shows that environmental exposure to mimivirus represents a risk factor in triggering autoimmunity to collagens.
doi:10.1128/JVI.03141-13
PMCID: PMC3911627  PMID: 24173233
4.  Clinical Criteria Replenish High-Sensitive Troponin and Inflammatory Markers in the Stratification of Patients with Suspected Acute Coronary Syndrome 
PLoS ONE  2014;9(6):e98626.
Objectives
In patients with suspected acute coronary syndrome (ACS), rapid triage is essential. The aim of this study was to establish a tool for risk prediction of 30-day cardiac events (CE) on admission. 30-day cardiac events (CE) were defined as early coronary revascularization, subsequent myocardial infarction, or cardiovascular death within 30 days.
Methods and Results
This single-centre, prospective cohort study included 377 consecutive patients presenting to the emergency department with suspected ACS and for whom troponin T measurements were requested on clinical grounds. Fifteen biomarkers were analyzed in the admission sample, and clinical parameters were assessed by the TIMI risk score for unstable angina/Non-ST myocardial infarction and the GRACE risk score. Sixty-nine (18%) patients presented with and 308 (82%) without ST-elevations, respectively. Coronary angiography was performed in 165 (44%) patients with subsequent percutaneous coronary intervention – accounting for the majority of CE – in 123 (33%) patients, respectively. Eleven out of 15 biomarkers were elevated in patients with CE compared to those without. High-sensitive troponin T (hs-cTnT) was the best univariate biomarker to predict CE in Non-ST-elevation patients (AUC 0.80), but did not yield incremental information above clinical TIMI risk score (AUC 0.80 vs 0.82, p = 0.69). Equivalence testing of AUCs of risk models and non-inferiority testing demonstrated that the clinical TIMI risk score alone was non-inferior to its combination with hs-cTnT in predicting CE.
Conclusions
In patients presenting without ST-elevations, identification of those prone to CE is best based on clinical assessment based on TIMI risk score criteria and hs-cTnT.
doi:10.1371/journal.pone.0098626
PMCID: PMC4043791  PMID: 24892556
5.  Synovial fibroblasts spread rheumatoid arthritis to unaffected joints 
Nature medicine  2009;15(12):1414-1420.
Active rheumatoid arthritis is characterized by originating from few but affecting subsequently the majority of joints. Thus far, the pathways of the progression of the disease are largely unknown. As rheumatoid arthritis synovial fibroblasts (RASFs) are key players in joint destruction and migrate in vitro, the current study evaluated the potential of RASFs to spread the disease in vivo. To simulate the primary joint of origin, healthy human cartilage was co-implanted subcutaneously into SCID mice together with RASFs. At the contralateral flank, healthy cartilage was implanted without cells. RASFs showed an active movement to the naïve cartilage via the vasculature independent of the site of application of RASFs into the SCID mouse, leading to a strong destruction of the target cartilage. These findings support the hypothesis that the characteristic clinical phenomenon of destructive arthritis spreading between joints is mediated, at least in part, by the transmigration of activated RASFs.
doi:10.1038/nm.2050
PMCID: PMC3678354  PMID: 19898488
6.  Improved Flow Cytometric Assessment Reveals Distinct Microvesicle (Cell-Derived Microparticle) Signatures in Joint Diseases 
PLoS ONE  2012;7(11):e49726.
Introduction
Microvesicles (MVs), earlier referred to as microparticles, represent a major type of extracellular vesicles currently considered as novel biomarkers in various clinical settings such as autoimmune disorders. However, the analysis of MVs in body fluids has not been fully standardized yet, and there are numerous pitfalls that hinder the correct assessment of these structures.
Methods
In this study, we analyzed synovial fluid (SF) samples of patients with osteoarthritis (OA), rheumatoid arthritis (RA) and juvenile idiopathic arthritis (JIA). To assess factors that may confound MV detection in joint diseases, we used electron microscopy (EM), Nanoparticle Tracking Analysis (NTA) and mass spectrometry (MS). For flow cytometry, a method commonly used for phenotyping and enumeration of MVs, we combined recent advances in the field, and used a novel approach of differential detergent lysis for the exclusion of MV-mimicking non-vesicular signals.
Results
EM and NTA showed that substantial amounts of particles other than MVs were present in SF samples. Beyond known MV-associated proteins, MS analysis also revealed abundant plasma- and immune complex-related proteins in MV preparations. Applying improved flow cytometric analysis, we demonstrate for the first time that CD3+ and CD8+ T-cell derived SF MVs are highly elevated in patients with RA compared to OA patients (p = 0.027 and p = 0.009, respectively, after Bonferroni corrections). In JIA, we identified reduced numbers of B cell-derived MVs (p = 0.009, after Bonferroni correction).
Conclusions
Our results suggest that improved flow cytometric assessment of MVs facilitates the detection of previously unrecognized disease-associated vesicular signatures.
doi:10.1371/journal.pone.0049726
PMCID: PMC3502255  PMID: 23185418
7.  Autotaxin expression from synovial fibroblasts is essential for the pathogenesis of modeled arthritis 
Synovial fibroblasts from patients and mice with arthritis express autotaxin, and ablation of autotaxin in fibroblasts ameliorates disease.
Rheumatoid arthritis is a destructive arthropathy characterized by chronic synovial inflammation that imposes a substantial socioeconomic burden. Under the influence of the proinflammatory milieu, synovial fibroblasts (SFs), the main effector cells in disease pathogenesis, become activated and hyperplastic, releasing proinflammatory factors and tissue-remodeling enzymes. This study shows that activated arthritic SFs from human patients and animal models express significant quantities of autotaxin (ATX; ENPP2), a lysophospholipase D that catalyzes the conversion of lysophosphatidylcholine to lysophosphatidic acid (LPA). ATX expression from SFs was induced by TNF, and LPA induced SF activation and effector functions in synergy with TNF. Conditional genetic ablation of ATX in mesenchymal cells, including SFs, resulted in disease attenuation in animal models of arthritis, establishing the ATX/LPA axis as a novel player in chronic inflammation and the pathogenesis of arthritis and a promising therapeutic target.
doi:10.1084/jem.20112012
PMCID: PMC3348105  PMID: 22493518
8.  Antibody Phage Display Assisted Identification of Junction Plakoglobin as a Potential Biomarker for Atherosclerosis 
PLoS ONE  2012;7(10):e47985.
To date, no plaque-derived blood biomarker is available to allow diagnosis, prognosis or monitoring of atherosclerotic vascular diseases. In this study, specimens of thrombendarterectomy material from carotid and iliac arteries were incubated in protein-free medium to obtain plaque and control secretomes for subsequent subtractive phage display. The selection of nine plaque secretome-specific antibodies and the analysis of their immunopurified antigens by mass spectrometry led to the identification of 22 proteins. One of them, junction plakoglobin (JUP-81) and its smaller isoforms (referred to as JUP-63, JUP-55 and JUP-30 by molecular weight) were confirmed by immunohistochemistry and immunoblotting with independent antibodies to be present in atherosclerotic plaques and their secretomes, coronary thrombi of patients with acute coronary syndrome (ACS) and macrophages differentiated from peripheral blood monocytes as well as macrophage-like cells differentiated from THP1 cells. Plasma of patients with stable coronary artery disease (CAD) (n = 15) and ACS (n = 11) contained JUP-81 at more than 2- and 14-fold higher median concentrations, respectively, than plasma of CAD-free individuals (n = 13). In conclusion, this proof of principle study identified and verified JUP isoforms as potential plasma biomarkers for atherosclerosis. Clinical validation studies are needed to determine its diagnostic efficacy and clinical utility as a biomarker for diagnosis, prognosis or monitoring of atherosclerotic vascular diseases.
doi:10.1371/journal.pone.0047985
PMCID: PMC3480477  PMID: 23110151
9.  ATP Induced Brain-Derived Neurotrophic Factor Expression and Release from Osteoarthritis Synovial Fibroblasts Is Mediated by Purinergic Receptor P2X4 
PLoS ONE  2012;7(5):e36693.
Brain-derived neurotrophic factor (BDNF), a neuromodulator involved in nociceptive hypersensitivity in the central nervous system, is also expressed in synoviocytes of osteoarthritis (OA) and rheumatoid arthritis (RA) patients. We investigated the role of P2 purinoreceptors in the induction of BDNF expression in synovial fibroblasts (SF) of OA and RA patients. Cultured SF from patients with symptomatic knee OA and RA were stimulated with purinoreceptor agonists ATP, ADP, or UTP. The expression of BDNF mRNA was measured by quantitative TaqMan PCR. BDNF release into cell culture supernatants was monitored by ELISA. P2X4 expression in synovial tissue was detected by immunohistochemistry. Endogenous P2X4 expression was decreased by siRNA transfection before ATP stimulation. Kinase pathways were blocked before ATP stimulation. BDNF mRNA expression levels in OASF were increased 2 h and 5 h after ATP stimulation. Mean BDNF levels in cell culture supernatants of unstimulated OASF and RASF were 19 (±9) and 67 (±49) pg/ml, respectively. BDNF levels in SF supernatants were only elevated 5 h after ATP stimulation. BDNF mRNA expression in OASF was induced both by P2X receptor agonists ATP and ADP, but not by UTP, an agonist of P2Y purinergic receptors. The ATP-induced BDNF mRNA expression in OASF was decreased by siRNA-mediated reduction of endogenous P2X4 levels compared to scrambled controls. Inhibition of p38, but not p44/42 signalling reduced the ATP-mediated BDNF mRNA induction. Here we show a functional role of the purinergic receptor P2X4 and p38 kinase in the ATP-induced expression and release of the neurotrophin BDNF in SF.
doi:10.1371/journal.pone.0036693
PMCID: PMC3360754  PMID: 22715356
10.  Resistin in idiopathic inflammatory myopathies 
Arthritis Research & Therapy  2012;14(3):R111.
Introduction
The purpose of this study was to evaluate and compare the serum levels and local expression of resistin in patients with idiopathic inflammatory myopathies to controls, and to determine the relationship between resistin levels, inflammation and disease activity.
Methods
Serum resistin levels were determined in 42 patients with inflammatory myopathies and 27 healthy controls. The association among resistin levels, inflammation, global disease activity and muscle strength was examined. The expression of resistin in muscle tissues from patients with inflammatory myopathies and healthy controls was evaluated. Gene expression and protein release from resistin-stimulated muscle and mononuclear cells were assessed.
Results
In patients with inflammatory myopathies, the serum levels of resistin were significantly higher than those observed in controls (8.53 ± 6.84 vs. 4.54 ± 1.08 ng/ml, P < 0.0001) and correlated with C-reactive protein (CRP) levels (r = 0.328, P = 0.044) and myositis disease activity assessment visual analogue scales (MYOACT) (r = 0.382, P = 0.026). Stronger association was observed between the levels of serum resistin and CRP levels (r = 0.717, P = 0.037) as well as MYOACT (r = 0.798, P = 0.007), and there was a trend towards correlation between serum resistin and myoglobin levels (r = 0.650, P = 0.067) in anti-Jo-1 positive patients. Furthermore, in patients with dermatomyositis, serum resistin levels significantly correlated with MYOACT (r = 0.667, P = 0.001), creatine kinase (r = 0.739, P = 0.001) and myoglobin levels (r = 0.791, P = 0.0003) and showed a trend towards correlation with CRP levels (r = 0.447, P = 0.067). Resistin expression in muscle tissue was significantly higher in patients with inflammatory myopathies compared to controls, and resistin induced the expression of interleukins (IL)-1β and IL-6 and monocyte chemoattractant protein (MCP)-1 in mononuclear cells but not in myocytes.
Conclusions
The results of this study indicate that higher levels of serum resistin are associated with inflammation, higher global disease activity index and muscle injury in patients with myositis-specific anti-Jo-1 antibody and patients with dermatomyositis. Furthermore, up-regulation of resistin in muscle tissue and resistin-induced synthesis of pro-inflammatory cytokines in mononuclear cells suggest a potential role for resistin in the pathogenesis of inflammatory myopathies.
doi:10.1186/ar3836
PMCID: PMC3446487  PMID: 22577940
11.  Role of MicroRNAs in Fibrosis 
Fibrosis is the leading cause of organ dysfunction in diseases such as systemic sclerosis, liver cirrhosis, cardiac fibrosis, progressive kidney disease, and idiopathic pulmonary fibrosis. The hallmark of fibrosis is tissue remodeling with excess deposition of extracellular matrix components, predominantly collagens. Different cell types, cytokines, growth factors, and enzymes interact in complex pathogenic networks with myofibroblasts playing a pivotal role. MicroRNAs are small non-coding RNAs acting as negative regulators of gene expression at the post-transcriptional level. MicroRNAs have been associated with many basic cellular processes as well as with a wide spectrum of diseases, most notably cancer. This review provides a comprehensive overview of microRNAs regulating profibrotic pathways and extracellular matrix synthesis. The potential of miRNA for targeted therapeutic approaches in fibrotic disorders is also discussed.
doi:10.2174/1874312901206010130
PMCID: PMC3396185  PMID: 22802911
Fibrosis; fibroblasts; microRNA (miRNA)-mediated gene regulation regulation; transforming growth factor-beta (TGF-β); connective tissue growth factor (CTGF); extracellular matrix (ECM); epithelial-to-mesenchymal transition (EMT); signaling pathways; antagomirs.
12.  Platelet-derived serotonin links vascular disease and tissue fibrosis 
Blocking 5-HT2B receptor provides a therapeutic target for fibrotic diseases caused by activated platelet release of serotonin during vascular damage.
Vascular damage and platelet activation are associated with tissue remodeling in diseases such as systemic sclerosis, but the molecular mechanisms underlying this association have not been identified. In this study, we show that serotonin (5-hydroxytryptamine [5-HT]) stored in platelets strongly induces extracellular matrix synthesis in interstitial fibroblasts via activation of 5-HT2B receptors (5-HT2B) in a transforming growth factor β (TGF-β)–dependent manner. Dermal fibrosis was reduced in 5-HT2B−/− mice using both inducible and genetic models of fibrosis. Pharmacologic inactivation of 5-HT2B also effectively prevented the onset of experimental fibrosis and ameliorated established fibrosis. Moreover, inhibition of platelet activation prevented fibrosis in different models of skin fibrosis. Consistently, mice deficient for TPH1, the rate-limiting enzyme for 5-HT production outside the central nervous system, showed reduced experimental skin fibrosis. These findings suggest that 5-HT/5-HT2B signaling links vascular damage and platelet activation to tissue remodeling and identify 5-HT2B as a novel therapeutic target to treat fibrotic diseases.
doi:10.1084/jem.20101629
PMCID: PMC3092343  PMID: 21518801
13.  Altered Expression of MicroRNA-203 in Rheumatoid Arthritis Synovial Fibroblasts and Its Role in Fibroblast Activation 
Arthritis and rheumatism  2011;63(2):373-381.
Objective
MicroRNA (miRNA) are recognized as important regulators of a variety of fundamental biologic processes. Previously, we described increased expression of miR-155 and miR-146a in rheumatoid arthritis (RA) and showed a repressive effect of miR-155 on matrix metalloproteinase (MMP) expression in RA synovial fibroblasts (RASFs). The present study was undertaken to examine alterations in expression of miR-203 in RASFs and analyze its role in fibroblast activation.
Methods
Differentially expressed miRNA in RASFs versus osteoarthritis synovial fibroblasts (OASFs) were identified by real-time polymerase chain reaction (PCR)–based screening of 260 individual miRNA. Transfection of miR-203 precursor was used to analyze the function of miR-203 in RASFs. Levels of interleukin-6 (IL-6) and MMPs were measured by real-time PCR and enzyme-linked immunosorbent assay. RASFs were stimulated with IL-1β, tumor necrosis factor α (TNFα), lipopolysaccharide (LPS), and 5-azacytidine (5-azaC). Activity of IκB kinase 2 was inhibited with SC-514.
Results
Expression of miR-203 was higher in RASFs than in OASFs or fibroblasts from healthy donors. Levels of miR-203 did not change upon stimulation with IL-1β, TNFα, or LPS; however, DNA demethylation with 5-azaC increased the expression of miR-203. Enforced expression of miR-203 led to significantly increased levels of MMP-1 and IL-6. Induction of IL-6 by miR-203 overexpression was inhibited by blocking of the NF-κB pathway. Basal expression levels of IL-6 correlated with basal expression levels of miR-203.
Conclusion
The current results demonstrate methylation-dependent regulation of miR-203 expression in RASFs. Importantly, they also show that elevated levels of miR-203 lead to increased secretion of MMP-1 and IL-6 via the NF-κB pathway and thereby contribute to the activated phenotype of synovial fibroblasts in RA.
doi:10.1002/art.30115
PMCID: PMC3116142  PMID: 21279994
14.  Imbalance in distribution of functional autologous regulatory T cells in rheumatoid arthritis 
Annals of the Rheumatic Diseases  2007;66(9):1151-1156.
Objectives
Regulatory T cells (Tregs) exert their anti‐inflammatory activity predominantly by cell contact‐dependent mechanisms. A study was undertaken to investigate the regulatory capacity of autologous peripheral blood Tregs in contact with synovial tissue cell cultures, and to evaluate their presence in peripheral blood, synovial tissue and synovial fluid of patients with rheumatoid arthritis (RA).
Methods
44 patients with RA and 5 with osteoarthritis were included in the study. The frequency of interferon (IFN)γ‐secreting cells was quantified in synovial tissue cell cultures, CD3‐depleted synovial tissue cell cultures, synovial tissue cultures co‐cultured with autologous CD4+ and with CD4+CD25+ peripheral blood T cells by ELISPOT. Total CD3+, Th1 polarised and Tregs were quantified by real‐time PCR for CD3ε, T‐bet and FoxP3 mRNA, and by immunohistochemistry for FoxP3 protein.
Results
RA synovial tissue cell cultures exhibited spontaneous expression of IFNγ which was abrogated by depletion of CD3+ T cells and specifically reduced by co‐culture with autologous peripheral blood Treg. The presence of Treg in RA synovitis was indicated by FoxP3 mRNA expression and confirmed by immunohistochemistry. The amount of FoxP3 transcripts, however, was lower in the synovial membrane than in peripheral blood or synovial fluid. The T‐bet/FoxP3 ratio correlated with both a higher grade of synovial tissue lymphocyte infiltration and higher disease activity.
Conclusion
This study has shown, for the first time in human RA, the efficacy of autologous Tregs in reducing the inflammatory activity of synovial tissue cell cultures ex vivo, while in the synovium FoxP3+ Tregs of patients with RA are reduced compared with peripheral blood and synovial fluid. This local imbalance of Th1 and Treg may be responsible for repeated rheumatic flares and thus will be of interest as a target for future treatments.
doi:10.1136/ard.2006.068320
PMCID: PMC1955165  PMID: 17392348
15.  Cell culture and passaging alters gene expression pattern and proliferation rate in rheumatoid arthritis synovial fibroblasts 
Introduction
Rheumatoid arthritis synovial fibroblasts (RASF) are key players in synovial pathophysiology and are therefore examined extensively in various experimental approaches. We evaluated, whether passaging during culture and freezing has effects on gene expression and cell proliferation.
Methods
RASF were passaged for up to 8 passages. RNA was isolated after each passage and cDNA arrays were performed to evaluate the RNA expression pattern during passaging. In addition, doubling time of the cells was also measured.
Results
From passages 2-4, mRNA expression did not change significantly. Gene expression in RASF started to change in passages 5-6 with 7-10% differentially expressed genes. After passages 7-8, more than 10% of the genes were differentially expressed. The doubling rate was constant for up to 5 passages and decreased after passages 6-8. After freezing, gene expression of the second passage is comparable to gene expression prior to freezing.
Conclusions
The results of this study show, that experiments, which examine gene expression of RASF and shall reflect or imitate an in vivo situation, should be limited to early culture passages to avoid cell culture effects. It is not necessary to stop culturing SF after a few passages, but to keep the problems of cell culture in mind to avoid false positive results. Especially, when large-scale screening methods on mRNA level are used. Of note, freezing does not affect gene expression substantially.
doi:10.1186/ar3010
PMCID: PMC2911867  PMID: 20462438
16.  Attachment to laminin‐111 facilitates transforming growth factor β‐induced expression of matrix metalloproteinase‐3 in synovial fibroblasts 
Annals of the Rheumatic Diseases  2006;66(4):446-451.
Background
In the synovial membrane of patients with rheumatoid arthritis (RA), a strong expression of laminins and matrix degrading proteases was reported.
Aim
To investigate the regulation of matrix metalloproteinases (MMPs) in synovial fibroblasts (SFs) of patients with osteoarthritis (OA) and RA by attachment to laminin‐1 (LM‐111) and in the presence or absence of costimulatory signals provided by transforming growth factor β (TGFβ).
Methods
SFs were seeded in laminin‐coated flasks and activated by addition of TGFβ. The expression of genes was investigated by quantitative reverse transcriptase‐polymerase chain reaction (qRT‐PCR), immunocytochemistry and ELISA, and intracellular signalling pathways by immunoblotting, and by poisoning p38MAPK by SB203580, MEK‐ERK by PD98059 and SMAD2 by A‐83‐01.
Results
Attachment of SF to LM‐111 did not activate the expression of MMPs, but addition of TGFβ induced a fivefold higher expression of MMP‐3. Incubation of SF on LM‐111 in the presence of TGFβ induced a significant 12‐fold higher expression of MMP‐3 mRNA, and secretion of MMP‐3 was elevated 20‐fold above controls. Functional blocking of LM‐111–integrin interaction reduced the laminin‐activated MMP‐3 expression significantly. Stimulation of SF by LM‐111 and TGFβ activated the p38MAPK, ERK and SMAD2 pathways, and inhibition of these pathways by using SB203580, PD98059 or A‐83‐01 confirmed the involvement of these pathways in the regulation of MMP‐3.
Conclusion
Attachment of SF to LM‐111 by itself has only minor effects on the expression of MMP‐1 or MMP‐3, but it facilitates the TGFβ‐induced expression of MMP‐3 significantly. This mode of MMP‐3 induction may therefore contribute to inflammatory joint destruction in RA independent of the proinflammatory cytokines interleukin (IL)1β or tumour necrosis factor (TNF)α.
doi:10.1136/ard.2006.060228
PMCID: PMC1856036  PMID: 17124250
17.  Increased levels of circulating microparticles in primary Sjögren's syndrome, systemic lupus erythematosus and rheumatoid arthritis and relation with disease activity 
Arthritis Research & Therapy  2009;11(5):R156.
Introduction
Cell stimulation leads to the shedding of phosphatidylserine (PS)-rich microparticles (MPs). Because autoimmune diseases (AIDs) are characterized by cell activation, we investigated level of circulating MPs as a possible biomarker in primary Sjögren's syndrome (pSS), systemic lupus erythematosus (SLE) and rheumatoid arthritis (RA).
Methods
We measured plasma levels of total, platelet and leukocyte MPs by prothrombinase capture assay and flow cytometry in 43 patients with pSS, 20 with SLE and 24 with RA and in 44 healthy controls (HCs). Secretory phospholipase A2 (sPLA2) activity was assessed by fluorometry. Soluble CD40 ligand (sCD40L) and soluble P-selectin (sCD62P), reflecting platelet activation, were measured by ELISA.
Results
Patients with pSS showed increased plasma level of total MPs (mean ± SEM 8.49 ± 1.14 nM PS equivalent (Eq), P < 0.0001), as did patients with RA (7.23 ± 1.05 n PS Eq, P = 0.004) and SLE (7.3 ± 1.25 nM PS Eq, P = 0.0004), as compared with HCs (4.13 ± 0.2 nM PS Eq). Patients with AIDs all showed increased level of platelet MPs (P < 0.0001), but only those with pSS showed increased level of leukocyte MPs (P < 0.0001). Results by capture assay and flow cytometry were correlated. In patients with high disease activity according to extra-glandular complications (pSS), DAS28 (RA) or SLEDAI (SLE) compared with low-activity patients, the MP level was only slightly increased in comparison with those having a low disease activity. Platelet MP level was inversely correlated with anti-DNA antibody level in SLE (r = -0.65; P = 0.003) and serum β2 microglobulin level in pSS (r = -0.37; P < 0.03). The levels of total and platelet MPs were inversely correlated with sPLA2 activity (r = -0.37, P = 0.0007; r = -0.36, P = 0.002, respectively). sCD40L and sCD62P concentrations were significantly higher in pSS than in HC (P ≤ 0.006).
Conclusions
Plasma MP level is elevated in pSS, as well as in SLE and RA, and could be used as a biomarker reflecting systemic cell activation. Level of leukocyte-derived MPs is increased in pSS only. The MP level is low in case of more severe AID, probably because of high secretory phospholipase A2 (sPLA2) activity, which leads to consumption of MPs. Increase of platelet-derived MPs, sCD40L and sCD62P, highlights platelet activation in pSS.
doi:10.1186/ar2833
PMCID: PMC2787287  PMID: 19832990
18.  Effect of the oral application of a highly selective MMP-13 inhibitor in three different animal models of rheumatoid arthritis 
Annals of the Rheumatic Diseases  2009;69(5):898-902.
Objective
To evaluate the decrease of cartilage destruction by a novel orally active and specific matrix metalloproteinase 13 (MMP-13) inhibitor in three different animal models of rheumatoid arthritis (RA).
Materials and methods
The SCID mouse co-implantation model of RA, the collagen-induced arthritis (CIA) model in mice and the antigen-induced arthritis model (AIA) in rabbits were used.
Results
In the SCID mouse co-implantation model, the MMP-13 inhibitor reduced cartilage destruction by 75%. In the CIA model of RA, the MMP-13 inhibitor resulted in a significant and dose-dependent decrease in clinical symptoms as well as of cartilage erosion by 38% (30 mg/kg), 28% (10 mg/kg) and 21% (3 mg/kg). No significant effects were seen in the AIA model. No toxic effects were seen in all three animal models.
Conclusion
Although several MMPs in concert with other proteinases have a role in the process of cartilage destruction, there is a need for highly selective MMP inhibitors to reduce severe side effects that occur with non-specific inhibitors. Significant inhibition of MMP-13 reduced cartilage erosions in two of three tested animal models of RA. These results strongly support the development of this class of drugs to reduce or halt joint destruction in patients with RA.
doi:10.1136/ard.2008.106021
PMCID: PMC2925150  PMID: 19497915
19.  Caveolin-1 Expression and Hemodynamics in COPD Patients 
Caveolin-1 is a regulator of both intracellular calcium homeostasis and endothelial nitric oxide synthase and may play a pathogenetic role in pulmonary hypertension. In the present study, we aimed to investigate the correlations between pulmonary hemodynamics and vessel morphology including the expression of Caveolin-1 in pulmonary arterioles from patients with chronic obstructive pulmonary disease (COPD) who underwent lung-volume reduction surgery. Staining and subsequent analysis was performed on paraffin-embedded lung tissue from COPD patients (n = 12). Pulmonary arteries with an external diameter of 100-500µm were analysed. Immunhistochemistry with antibodies against caveolin-1 was performed and intensity was assessed. Morphometric data were obtained by using computer-assisted imaging software. The findings were quantified and correlated to hemodynamic data obtained by right-heart catheterization. In COPD patients with pulmonary hypertension (n = 5), the expression of caveolin-1 within the medial smooth muscle cell layer was found to be increased, whereas the intimal caveolin-1 was more prominently expressed in COPD patients with normal pulmonary pressures (n = 7). The ratio between these expression patterns was positively correlated to the mean pulmonary artery pressure. Similar findings were observed for the ratio between intimal and medial thickness as well as for the expression of smooth muscle actin (SMA).
Taken together, the expression of caveolin-1 within medial smooth muscle cells of pulmonary arteries in patients with COPD is associated with pulmonary hypertension. Our results thus emphasize a potential novel player in the pathogenesis of COPD-associated pulmonary hypertension.
doi:10.2174/1874306400903010073
PMCID: PMC2703474  PMID: 19572028
Caveolin-1; chronic obstructive pulmonary disease (COPD); morphometry; pulmonary hypertension.
20.  DREAM is reduced in synovial fibroblasts of patients with chronic arthritic pain: is it a suitable target for peripheral pain management? 
Introduction
The endogenous pain-relieving system depends in part on the regulation of nociceptive signals through binding of opioids to the corresponding opioid receptor. Interfering with the trans-repression effect of downstream regulatory element antagonist modulator (DREAM) on the transcription of the opioid dynorphin-encoding prodynorphin (pdyn) gene might enhance pain relief in the periphery.
Methods
Expression levels were measured in osteoarthritis (OA) synovial fibroblast-like cells (SFLCs) (n = 8) and in peripheral blood mononuclear cells (PBMCs) from OA patients (n = 53) and healthy controls (n = 26) by real-time polymerase chain reaction. Lysed OA SFLCs were analyzed by immunoprecipitation. Translation of DREAM mRNA was inhibited by small interfering RNAs (siRNAs). Expressions of DREAM, pdyn, and c-fos mRNAs were measured at 24, 48, and 72 hours after transfection.
Results
The expression of DREAM mRNA was shown in both healthy and OA SFLCs as well as PBMCs. Inhibiting transcription using siRNAs led to a marked reduction in DREAM expression after 24, 48, and 72 hours. However, no significant changes in c-fos and pdyn expression occurred. In addition, DREAM mRNA expression was significantly reduced in OA patients with chronic pain (pain intensity as measured by a visual analog scale scale of greater than 40), but no pdyn expression was detectable.
Conclusion
To our knowledge, this is the first report showing the expression of DREAM in SFLCs and PBMCs on the mRNA level. However, DREAM protein was not detectable. Since repression of pdyn transcription persists after inhibiting DREAM translation, DREAM appears to play no functional role in the kappa opioid receptor system in OA SFLCs. Therefore, our data suggest that DREAM appears not to qualify as a target in peripheral pain management.
doi:10.1186/ar2431
PMCID: PMC2483451  PMID: 18507845
21.  Safety concerns on the development of novel therapeutic drugs 
Along with recent innovative approaches resulting in the development of new therapies such as small molecular inhibitors, therapeutic antibodies, recombinant proteins and gene therapy, there is increasing need for improved understanding of the basic molecular mechanisms that are exploited by such treatments. Helpful tools in the analysis of drug effects include high-throughput screening techniques such as microarrays, which are used in transcriptomics and pharmacogenomics. Although we are far from using these extensive and costly tests in our daily clinical routine, their application in basic research nevertheless takes us closer to individualized therapeutic strategies, in which the optimal therapeutic regimen is identified for each individual patient.
doi:10.1186/ar2032
PMCID: PMC1779448  PMID: 16968526
22.  Somatic mutations in mitochondria: the chicken or the egg? 
Arthritis Research & Therapy  2005;7(5):179-180.
Somatic mutations of mitochondrial DNA have been detected in various pathologies such as cancer, neurodegenerative diseases, cardiac disorders and aging in general. Now it has been found that patients with rheumatoid arthritis also have a higher incidence of mitochondrial mutations in synoviocytes and synovial tissue compared with patients with osteoarthritis. Furthermore, it has been shown that these mutations possibly result in changed peptides that are presented by major histocompatibility complex II and thus might be recognized as non-self by the immune system. Further studies will show whether these mutations are actually able to trigger autoimmune inflammation in rheumatoid arthritis or whether they must be considered epiphenomena of cellular damage in chronic inflammation.
doi:10.1186/ar1809
PMCID: PMC1257449  PMID: 16207343
23.  Higher susceptibility to Fas ligand induced apoptosis and altered modulation of cell death by tumor necrosis factor-α in periarticular tenocytes from patients with knee joint osteoarthritis 
Arthritis Research & Therapy  2003;5(5):R253-R261.
The aim of the present study was to investigate the expression of Fas in periarticular tenocytes of patients with osteoarthritis (OA) and to study their susceptibility to Fas ligand-mediated apoptosis. Tendon samples were obtained from the quadriceps femoris muscle of patients with knee OA and used for histological evaluation, for immunohistochemical detection of Fas, and to establish tenocyte cultures. The expression of Fas mRNA was determined by quantitative PCR. Levels of soluble Fas and soluble tumour necrosis factor (TNF) receptor I were measured using ELISA. Apoptosis was induced with recombinant human Fas ligand and measured by a histone fragmentation assay and flow cytometry. The effects of TNF-α were studied by stimulation with TNF-α alone or 24 hours before the induction of apoptosis. Tendon samples from non-OA patients were used as controls. Histological evaluation revealed degenerative changes in the tendons of all OA patients but not in the controls. Fas was detected by immunohistochemistry in all specimens, but quantitative PCR revealed significantly higher levels of Fas mRNA in OA tenocytes. In contrast, lower levels of soluble Fas were found in OA tenocytes by ELISA. OA tenocytes were significantly more susceptible to Fas ligand induced apoptosis than were control cells. TNF-α reduced the Fas ligand induced apoptosis in OA tenocytes but had no effects on control tenocytes. These data suggest that knee OA is associated with higher susceptibility of periarticular tenocytes to Fas ligand induced apoptosis because of higher expression of Fas but lower levels of apoptosis-inhibiting soluble Fas. These changes may contribute to decreased cellularity in degenerative tendons and promote their rupturing. The antiapoptotic effects of TNF-α in OA tenocytes most likely reflect regenerative attempts and must be taken into account when anti-TNF strategies are considered for OA.
PMCID: PMC193726  PMID: 12932288
apoptosis; osteoarthritis; Fas ligand; tenocytes; tumour necrosis factor-α
24.  Osteoclast-independent bone resorption by fibroblast-like cells 
Arthritis Research & Therapy  2003;5(3):R163-R173.
To date, mesenchymal cells have only been associated with bone resorption indirectly, and it has been hypothesized that the degradation of bone is associated exclusively with specific functions of osteoclasts. Here we show, in aseptic prosthesis loosening, that aggressive fibroblasts at the bone surface actively contribute to bone resorption and that this is independent of osteoclasts. In two separate models (a severe combined immunodeficient mouse coimplantation model and a dentin pit formation assay), these cells produce signs of bone resorption that are similar to those in early osteoclastic resorption. In an animal model of aseptic prosthesis loosening (i.e. intracranially self-stimulated rats), it is shown that these fibroblasts acquire their ability to degrade bone early on in their differentiation. Upon stimulation, such fibroblasts readily release acidic components that lower the pH of their pericellular milieu. Through the use of specific inhibitors, pericellular acidification is shown to involve the action of vacuolar type ATPases. Although fibroblasts, as mesenchymal derived cells, are thought to be incapable of resorbing bone, the present study provides the first evidence to challenge this widely held belief. It is demonstrated that fibroblast-like cells, under pathological conditions, may not only enhance but also actively contribute to bone resorption. These cells should therefore be considered novel therapeutic targets in the treatment of bone destructive disorders.
doi:10.1186/ar752
PMCID: PMC165048  PMID: 12723988
aseptic prosthesis loosening; bone resorption; dentin; fibroblasts; severe combined immunodeficient mouse
25.  Angiogenic and angiostatic factors in systemic sclerosis: increased levels of vascular endothelial growth factor are a feature of the earliest disease stages and are associated with the absence of fingertip ulcers 
Arthritis Research  2002;4(6):R11.
To examine whether the lack of sufficient neoangiogenesis in systemic sclerosis (SSc) is caused by a decrease in angiogenic factors and/or an increase in angiostatic factors, the potent proangiogenic molecules vascular endothelial growth factor (VEGF) and basic fibroblast growth factor, and the angiostatic factor endostatin were determined in patients with SSc and in healthy controls. Forty-three patients with established SSc and nine patients with pre-SSc were included in the study. Serum levels of VEGF, basic fibroblast growth factor and endostatin were measured by ELISA. Age-matched and sex-matched healthy volunteers were used as controls. Highly significant differences were found in serum levels of VEGF between SSc patients and healthy controls, whereas no differences could be detected for endostatin and basic fibroblast growth factor. Significantly higher levels of VEGF were detected in patients with Scl-70 autoantibodies and in patients with diffuse SSc. Patients with pre-SSc and short disease duration showed significant higher levels of VEGF than healthy controls, indicating that elevated serum levels of VEGF are a feature of the earliest disease stages. Patients without fingertip ulcers were found to have higher levels of VEGF than patients with fingertip ulcers. Levels of endostatin were associated with the presence of giant capillaries in nailfold capillaroscopy, but not with any other clinical parameter. The results show that the concentration of VEGF is already increased in the serum of SSc patients at the earliest stages of the disease. VEGF appears to be protective against ischemic manifestations when concentrations of VEGF exceed a certain threshold level.
PMCID: PMC153841  PMID: 12453314
basic fibroblast growth factor; endostatin; fingertip ulcers; systemic sclerosis; vascular endothelial growth factor

Results 1-25 (31)