PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-21 (21)
 

Clipboard (0)
None
Journals
Year of Publication
Document Types
1.  Two Independent Functional Risk Haplotypes in TNIP1 are Associated with Systemic Lupus Erythematosus 
Arthritis and rheumatism  2012;64(11):3695-3705.
Objective
Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by autoantibody production and altered type I interferon expression. Genetic surveys and genome-wide association studies have identified more than 30 SLE susceptibility genes. One of these genes, TNIP1, encodes the ABIN1 protein. ABIN1 functions in the immune system by restricting the NF-κB signaling. In order to better understand the genetic factors that influence association with SLE in genes that regulate the NF-κB pathway, we analyzed a dense set of genetic markers spanning TNIP1 and TAX1BP1, as well as the TNIP1 homolog, TNIP2, in case-control sets of diverse ethnic origins.
Methods
We fine-mapped TNIP1, TNIP2, and TAX1BP1 in a total of 8372 SLE cases and 7492 healthy controls from European-ancestry, African-American, Hispanic, East Asian, and African-American Gullah populations. Levels of TNIP1 mRNA and ABIN1 protein were analyzed using quantitative RT-PCR and Western blotting, respectively, in EBV-transformed human B cell lines.
Results
We found significant associations between genetic variants within TNIP1 and SLE but not in TNIP2 or TAX1BP1. After resequencing and imputation, we identified two independent risk haplotypes within TNIP1 in individuals of European-ancestry that were also present in African-American and Hispanic populations. These risk haplotypes produced lower levels of TNIP1 mRNA and ABIN1 protein suggesting they harbor hypomorphic functional variants that influence susceptibility to SLE by restricting ABIN1 expression.
Conclusion
Our results confirmed the association signals between SLE and TNIP1 variants in multiple populations and provide new insight into the mechanism by which TNIP1 variants may contribute to SLE pathogenesis.
doi:10.1002/art.34642
PMCID: PMC3485412  PMID: 22833143
2.  A functional haplotype of UBE2L3 confers risk for Systemic Lupus Erythematosus 
Genes and immunity  2012;13(5):380-387.
Systemic lupus erythematosus (SLE) is an autoimmune disease with diverse clinical manifestations characterized by the development of pathogenic autoantibodies manifesting in inflammation of target organs such as the kidneys, skin and joints. Genome-wide association studies have identified genetic variants in the UBE2L3 region that are associated with SLE in subjects of European and Asian ancestry. UBE2L3 encodes an ubiquitin-conjugating enzyme, UBCH7, involved in cell proliferation and immune function. In this study, we sought to further characterize the genetic association in the region of UBE2L3 and use molecular methods to determine the functional effect of the risk haplotype. We identified significant associations between variants in the region of UBE2L3 and SLE in individuals of European and Asian ancestry that exceeded a Bonferroni corrected threshold (P < 1 × 10−4). A single risk haplotype was observed in all associated populations. Individuals harboring the risk haplotype display a significant increase in both UBE2L3 mRNA expression (P = 0.0004) and UBCH7 protein expression (P = 0.0068). The results suggest that variants carried on the SLE associated UBE2L3 risk haplotype influence autoimmunity by modulating UBCH7 expression.
doi:10.1038/gene.2012.6
PMCID: PMC3411915  PMID: 22476155
Systemic Lupus Erythematosus; UBE2L3; Multi Ethnic Association Study; UBCH7 Expression
3.  Preferential Binding to Elk-1 by SLE-Associated IL10 Risk Allele Upregulates IL10 Expression 
PLoS Genetics  2013;9(10):e1003870.
Immunoregulatory cytokine interleukin-10 (IL-10) is elevated in sera from patients with systemic lupus erythematosus (SLE) correlating with disease activity. The established association of IL10 with SLE and other autoimmune diseases led us to fine map causal variant(s) and to explore underlying mechanisms. We assessed 19 tag SNPs, covering the IL10 gene cluster including IL19, IL20 and IL24, for association with SLE in 15,533 case and control subjects from four ancestries. The previously reported IL10 variant, rs3024505 located at 1 kb downstream of IL10, exhibited the strongest association signal and was confirmed for association with SLE in European American (EA) (P = 2.7×10−8, OR = 1.30), but not in non-EA ancestries. SNP imputation conducted in EA dataset identified three additional SLE-associated SNPs tagged by rs3024505 (rs3122605, rs3024493 and rs3024495 located at 9.2 kb upstream, intron 3 and 4 of IL10, respectively), and SLE-risk alleles of these SNPs were dose-dependently associated with elevated levels of IL10 mRNA in PBMCs and circulating IL-10 protein in SLE patients and controls. Using nuclear extracts of peripheral blood cells from SLE patients for electrophoretic mobility shift assays, we identified specific binding of transcription factor Elk-1 to oligodeoxynucleotides containing the risk (G) allele of rs3122605, suggesting rs3122605 as the most likely causal variant regulating IL10 expression. Elk-1 is known to be activated by phosphorylation and nuclear localization to induce transcription. Of interest, phosphorylated Elk-1 (p-Elk-1) detected only in nuclear extracts of SLE PBMCs appeared to increase with disease activity. Co-expression levels of p-Elk-1 and IL-10 were elevated in SLE T, B cells and monocytes, associated with increased disease activity in SLE B cells, and were best downregulated by ERK inhibitor. Taken together, our data suggest that preferential binding of activated Elk-1 to the IL10 rs3122605-G allele upregulates IL10 expression and confers increased risk for SLE in European Americans.
Author Summary
Systemic lupus erythematosus (SLE), a debilitating autoimmune disease characterized by the production of pathogenic autoantibodies, has a strong genetic basis. Variants of the IL10 gene, which encodes cytokine interleukin-10 (IL-10) with known function of promoting B cell hyperactivity and autoantibody production, are associated with SLE and other autoimmune diseases, and serum IL-10 levels are elevated in SLE patients correlating with increased disease activity. In this study, to discover SLE-predisposing causal variant(s), we assessed variants within the genomic region containing IL10 and its gene family member IL19, IL20 and IL24 for association with SLE in case and control subjects from diverse ancestries. We identified SLE-associated SNP rs3122605 located at 9.2 kb upstream of IL10 as the most likely causal variant in subjects of European ancestry. The SLE-risk allele of rs3122605 was dose-dependently associated with elevated IL10 expression at both mRNA and protein levels in peripheral blood samples from SLE patients and controls, which could be explained, at least in part, by its preferential binding to Elk-1, a transcription factor activated in B cells during active disease of SLE patients. Elk-1-mediated IL-10 overexpression could be downregulated by inhibiting activation of mitogen-activated protein kinases, suggesting a potential therapeutic target for SLE.
doi:10.1371/journal.pgen.1003870
PMCID: PMC3794920  PMID: 24130510
4.  PTPN22 Association in Systemic Lupus Erythematosus (SLE) with Respect to Individual Ancestry and Clinical Sub-Phenotypes 
PLoS ONE  2013;8(8):e69404.
Protein tyrosine phosphatase non-receptor type 22 (PTPN22) is a negative regulator of T-cell activation associated with several autoimmune diseases, including systemic lupus erythematosus (SLE). Missense rs2476601 is associated with SLE in individuals with European ancestry. Since the rs2476601 risk allele frequency differs dramatically across ethnicities, we assessed robustness of PTPN22 association with SLE and its clinical sub-phenotypes across four ethnically diverse populations. Ten SNPs were genotyped in 8220 SLE cases and 7369 controls from in European-Americans (EA), African-Americans (AA), Asians (AS), and Hispanics (HS). We performed imputation-based association followed by conditional analysis to identify independent associations. Significantly associated SNPs were tested for association with SLE clinical sub-phenotypes, including autoantibody profiles. Multiple testing was accounted for by using false discovery rate. We successfully imputed and tested allelic association for 107 SNPs within the PTPN22 region and detected evidence of ethnic-specific associations from EA and HS. In EA, the strongest association was at rs2476601 (P = 4.7×10−9, OR = 1.40 (95% CI = 1.25–1.56)). Independent association with rs1217414 was also observed in EA, and both SNPs are correlated with increased European ancestry. For HS imputed intronic SNP, rs3765598, predicted to be a cis-eQTL, was associated (P = 0.007, OR = 0.79 and 95% CI = 0.67–0.94). No significant associations were observed in AA or AS. Case-only analysis using lupus-related clinical criteria revealed differences between EA SLE patients positive for moderate to high titers of IgG anti-cardiolipin (aCL IgG >20) versus negative aCL IgG at rs2476601 (P = 0.012, OR = 1.65). Association was reinforced when these cases were compared to controls (P = 2.7×10−5, OR = 2.11). Our results validate that rs2476601 is the most significantly associated SNP in individuals with European ancestry. Additionally, rs1217414 and rs3765598 may be associated with SLE. Further studies are required to confirm the involvement of rs2476601 with aCL IgG.
doi:10.1371/journal.pone.0069404
PMCID: PMC3737240  PMID: 23950893
5.  Variable association of reactive intermediate genes with systemic lupus erythematosus (SLE) in populations with different African ancestry 
The Journal of rheumatology  2013;40(6):842-849.
Objective
Little is known about the genetic etiology of systemic lupus erythematosus (SLE) in individuals of African ancestry, despite its higher prevalence and greater disease severity. Overproduction of nitric oxide (NO) and reactive oxygen species are implicated in the pathogenesis and severity of SLE, making NO synthases and other reactive intermediate related genes biological candidates for disease susceptibility. This study analyzed variation in reactive intermediate genes for association with SLE in two populations with African ancestry.
Methods
A total of 244 SNPs from 53 regions were analyzed in non-Gullah African Americans (AA; 1432 cases and 1687 controls) and the genetically more homogeneous Gullah of the Sea Islands of South Carolina (133 cases and 112 controls) and. Single-marker, haplotype, and two-locus interaction tests were computed for these populations.
Results
The glutathione reductase gene GSR (rs2253409, P=0.0014, OR [95% CI]=1.26 [1.09–1.44]) was the most significant single-SNP association in AA. In the Gullah, the NADH dehydrogenase NDUFS4 (rs381575, P=0.0065, OR [95%CI]=2.10 [1.23–3.59]) and nitric oxide synthase gene NOS1 (rs561712, P=0.0072, OR [95%CI]=0.62 [0.44–0.88]) were most strongly associated with SLE. When both populations were analyzed together, GSR remained the most significant effect (rs2253409, P=0.00072, OR [95%CI]=1.26 [1.10–1.44]). Haplotype and two-locus interaction analyses also uncovered different loci in each population.
Conclusion
These results suggest distinct patterns of association with SLE in African-derived populations; specific loci may be more strongly associated within select population groups.
doi:10.3899/jrheum.120989
PMCID: PMC3735344  PMID: 23637325
systemic lupus erythematosus; African Americans; genetic association studies; oxygen compounds; single nucleotide polymorphism
6.  Evaluation of TRAF6 in a Large Multi-Ancestral Lupus Cohort 
Arthritis and Rheumatism  2012;64(6):1960-1969.
Objective
Systemic lupus erythematosus (SLE) is a heterogeneous autoimmune disease with significant immune system aberrations resulting from complex heritable genetics as well as environmental factors. TRAF6 is a candidate gene for SLE, which has a major role in several signaling pathways that are important for immunity and organ development.
Methods
Fifteen single-nucleotide polymorphisms (SNPs), across TRAF6 were evaluated in 7,490 SLE and 6,780 control subjects from different ancestries. Population-based case-control association analyses and meta-analyses were performed. P values, false discovery rate q values, and odds ratios with 95% confidence intervals were calculated.
Results
Evidence of associations in multiple SNPs was detected. The best overall p values were obtained for SNPs rs5030437 and rs4755453 (p=7.85×10−5 and p=4.73×10−5, respectively) without significant heterogeneity among populations (p=0.67 and p=0.50 in Q-statistic). In addition, rs540386 previously reported to be associated with RA was found to be in LD with these two SNPs (r2= 0.95) and demonstrated evidence of association with SLE in the same direction (meta-analysis p=9.15×10−4, OR=0.89, 95%CI=0.83–0.95). Thrombocytopenia improved the overall results in different populations (meta-analysis p=1.99×10−6, OR=0.57, 95%CI=0.45–0.72, for rs5030470). Finally evidence of family based association in 34 African-American pedigrees with the presence of thrombocytopenia were detected in one available SNP rs5030437 with Z score magnitude of 2.28 (p=0.02) under a dominant model.
Conclusion
Our data indicate the presence of association of TRAF6 with SLE in agreement with the previous report of association with RA. These data provide further support for the involvement of TRAF6 in the pathogenesis of autoimmunity.
doi:10.1002/art.34361
PMCID: PMC3380425  PMID: 22231568
TRAF6; polymorphism; systemic lupus erythematosus
7.  Association Between a Functional Variant Downstream of TNFAIP3 and Systemic Lupus Erythematosus 
Nature genetics  2011;43(3):253-258.
Systemic Lupus Erythematosus (SLE, OMIM 152700) is an autoimmune disease characterized by self-reactive antibodies resulting in systemic inflammation and organ failure. TNFAIP3, encoding the ubiquitin-modifying enzyme A20, is an established susceptibility locus for SLE. By fine mapping and genomic resequencing in ethnically diverse populations we fully characterized the TNFAIP3 risk haplotype and isolated a novel TT>A polymorphic dinucleotide associated with SLE in subjects of European (P = 1.58 × 10−8; odds ratio (OR) = 1.70) and Korean (P = 8.33 × 10−10; OR = 2.54) ancestry. This variant, located in a region of high conservation and regulatory potential, bound a nuclear protein complex comprised of NF-κB subunits with reduced avidity. Furthermore, compared with the non-risk haplotype, the haplotype carrying this variant resulted in reduced TNFAIP3 mRNA and A20 protein expression. These results establish this TT>A variant as the most likely functional polymorphism responsible for the association between TNFAIP3 and SLE.
doi:10.1038/ng.766
PMCID: PMC3103780  PMID: 21336280
8.  Fine Mapping of Xq28: Both MECP2 and IRAK1 Contribute to Risk for Systemic Lupus Erythematosus in Multiple Ancestral Groups 
Annals of the rheumatic diseases  2012;72(3):437-444.
Objectives
The Xq28 region containing IRAK1 and MECP2 has been identified as a risk locus for systemic lupus erythematosus (SLE) in previous genetic association studies. However, due to the strong linkage disequilibrium between IRAK1 and MECP2, it remains unclear which gene is affected by the underlying causal variant(s) conferring risk of SLE.
Methods
We fine-mapped ≥136 SNPs in a ~227kb region on Xq28, containing IRAK1, MECP2 and 7 adjacent genes (L1CAM, AVPR2, ARHGAP4, NAA10, RENBP, HCFC1 and TMEM187), for association with SLE in 15,783 case-control subjects derived from 4 different ancestral groups.
Results
Multiple SNPs showed strong association with SLE in European Americans, Asians and Hispanics at P<5×10−8 with consistent association in subjects with African ancestry. Of these, 6 SNPs located in the TMEM187-IRAK1-MECP2 region captured the underlying causal variant(s) residing in a common risk haplotype shared by all 4 ancestral groups. Among them, rs1059702 best explained the Xq28 association signals in conditional testings and exhibited the strongest P value in trans-ancestral meta-analysis (Pmeta=1.3×10−27, OR=1.43), and thus was considered to be the most-likely causal variant. The risk allele of rs1059702 results in the amino acid substitution S196F in IRAK1 and had previously been shown to increase NF-κB activity in vitro. We also found that the homozygous risk genotype of rs1059702 was associated with lower mRNA levels of MECP2, but not IRAK1, in SLE patients (P=0.0012) and healthy controls (P=0.0064).
Conclusion
These data suggest contributions of both IRAK1 and MECP2 to SLE susceptibility.
doi:10.1136/annrheumdis-2012-201851
PMCID: PMC3567234  PMID: 22904263
Systemic Lupus Erythematosus; Gene Polymorphism; Xq28; IRAK1; MECP2
9.  MicroRNA-3148 Modulates Allelic Expression of Toll-Like Receptor 7 Variant Associated with Systemic Lupus Erythematosus 
PLoS Genetics  2013;9(2):e1003336.
We previously reported that the G allele of rs3853839 at 3′untranslated region (UTR) of Toll-like receptor 7 (TLR7) was associated with elevated transcript expression and increased risk for systemic lupus erythematosus (SLE) in 9,274 Eastern Asians [P = 6.5×10−10, odds ratio (OR) (95%CI) = 1.27 (1.17–1.36)]. Here, we conducted trans-ancestral fine-mapping in 13,339 subjects including European Americans, African Americans, and Amerindian/Hispanics and confirmed rs3853839 as the only variant within the TLR7-TLR8 region exhibiting consistent and independent association with SLE (Pmeta = 7.5×10−11, OR = 1.24 [1.18–1.34]). The risk G allele was associated with significantly increased levels of TLR7 mRNA and protein in peripheral blood mononuclear cells (PBMCs) and elevated luciferase activity of reporter gene in transfected cells. TLR7 3′UTR sequence bearing the non-risk C allele of rs3853839 matches a predicted binding site of microRNA-3148 (miR-3148), suggesting that this microRNA may regulate TLR7 expression. Indeed, miR-3148 levels were inversely correlated with TLR7 transcript levels in PBMCs from SLE patients and controls (R2 = 0.255, P = 0.001). Overexpression of miR-3148 in HEK-293 cells led to significant dose-dependent decrease in luciferase activity for construct driven by TLR7 3′UTR segment bearing the C allele (P = 0.0003). Compared with the G-allele construct, the C-allele construct showed greater than two-fold reduction of luciferase activity in the presence of miR-3148. Reduced modulation by miR-3148 conferred slower degradation of the risk G-allele containing TLR7 transcripts, resulting in elevated levels of gene products. These data establish rs3853839 of TLR7 as a shared risk variant of SLE in 22,613 subjects of Asian, EA, AA, and Amerindian/Hispanic ancestries (Pmeta = 2.0×10−19, OR = 1.25 [1.20–1.32]), which confers allelic effect on transcript turnover via differential binding to the epigenetic factor miR-3148.
Author Summary
Systemic lupus erythematosus (SLE) is a debilitating autoimmune disease contributed to by excessive innate immune activation involving toll-like receptors (TLRs, particularly TLR7/8/9) and type I interferon (IFN) signaling pathways. TLR7 responds against RNA–containing nuclear antigens and activates IFN-α pathway, playing a pivotal role in the development of SLE. While a genomic duplication of Tlr7 promotes lupus-like disease in the Y-linked autoimmune accelerator (Yaa) murine model, the lack of common copy number variations at TLR7 in humans led us to identify a functional single nucleotide polymorphism (SNP), rs3853839 at 3′ UTR of the TLR7 gene, associated with SLE susceptibility in Eastern Asians. In this study, we fine-mapped the TLR7-TLR8 region and confirmed rs3853839 exhibiting the strongest association with SLE in European Americans, African Americans, and Amerindian/Hispanics. Individuals carrying the risk G allele of rs3853839 exhibited increased TLR7 expression at the both mRNA and protein level and decreased transcript degradation. MicroRNA-3148 (miR-3148) downregulated the expression of non-risk allele (C) containing transcripts preferentially, suggesting a likely mechanism for increased TLR7 levels in risk-allele carriers. This trans-ancestral mapping provides evidence for the global association with SLE risk at rs3853839, which resides in a microRNA–gene regulatory site affecting TLR7 expression.
doi:10.1371/journal.pgen.1003336
PMCID: PMC3585142  PMID: 23468661
10.  Admixture Mapping in Lupus Identifies Multiple Functional Variants within IFIH1 Associated with Apoptosis, Inflammation, and Autoantibody Production 
PLoS Genetics  2013;9(2):e1003222.
Systemic lupus erythematosus (SLE) is an inflammatory autoimmune disease with a strong genetic component. African-Americans (AA) are at increased risk of SLE, but the genetic basis of this risk is largely unknown. To identify causal variants in SLE loci in AA, we performed admixture mapping followed by fine mapping in AA and European-Americans (EA). Through genome-wide admixture mapping in AA, we identified a strong SLE susceptibility locus at 2q22–24 (LOD = 6.28), and the admixture signal is associated with the European ancestry (ancestry risk ratio ∼1.5). Large-scale genotypic analysis on 19,726 individuals of African and European ancestry revealed three independently associated variants in the IFIH1 gene: an intronic variant, rs13023380 [Pmeta = 5.20×10−14; odds ratio, 95% confidence interval = 0.82 (0.78–0.87)], and two missense variants, rs1990760 (Ala946Thr) [Pmeta = 3.08×10−7; 0.88 (0.84–0.93)] and rs10930046 (Arg460His) [Pdom = 1.16×10−8; 0.70 (0.62–0.79)]. Both missense variants produced dramatic phenotypic changes in apoptosis and inflammation-related gene expression. We experimentally validated function of the intronic SNP by DNA electrophoresis, protein identification, and in vitro protein binding assays. DNA carrying the intronic risk allele rs13023380 showed reduced binding efficiency to a cellular protein complex including nucleolin and lupus autoantigen Ku70/80, and showed reduced transcriptional activity in vivo. Thus, in SLE patients, genetic susceptibility could create a biochemical imbalance that dysregulates nucleolin, Ku70/80, or other nucleic acid regulatory proteins. This could promote antibody hypermutation and auto-antibody generation, further destabilizing the cellular network. Together with molecular modeling, our results establish a distinct role for IFIH1 in apoptosis, inflammation, and autoantibody production, and explain the molecular basis of these three risk alleles for SLE pathogenesis.
Author Summary
African-Americans (AA) are at increased risk of systemic lupus erythematosus (SLE), but the genetic basis of this risk increase is largely unknown. We used admixture mapping to localize disease-causing genetic variants that differ in frequency across populations. This approach is advantageous for localizing susceptibility genes in recently admixed populations like AA. Our genome-wide admixture scan identified seven admixture signals, and we followed the best signal at 2q22–24 with fine-mapping, imputation-based association analysis and experimental validation. We identified two independent coding variants and a non-coding variant within the IFIH1 gene associated with SLE. Together with molecular modeling, our results establish a distinct role for IFIH1 in apoptosis, inflammation, and autoantibody production, and explain the molecular basis of these three risk alleles for SLE pathogenesis.
doi:10.1371/journal.pgen.1003222
PMCID: PMC3575474  PMID: 23441136
11.  Evidence for gene-gene epistatic interactions among susceptibility loci for systemic lupus erythematosus 
Arthritis and Rheumatism  2012;64(2):485-492.
Objective
Several confirmed genetic susceptibility loci for lupus have been described. To date, no clear evidence for genetic epistasis is established in lupus. We test for gene-gene interactions in a number of known lupus susceptibility loci.
Methods
Eighteen SNPs tagging independent and confirmed lupus susceptibility loci were genotyped in a set of 4,248 lupus patients and 3,818 normal healthy controls of European descent. Epistasis was tested using a 2-step approach utilizing both parametric and non-parametric methods. The false discovery rate (FDR) method was used to correct for multiple testing.
Results
We detected and confirmed gene-gene interactions between the HLA region and CTLA4, IRF5, and ITGAM, and between PDCD1 and IL21 in lupus patients. The most significant interaction detected by parametric analysis was between rs3131379 in the HLA region and rs231775 in CTLA4 (Interaction odds ratio=1.19, z-score= 3.95, P= 7.8×10−5 (FDR≤0.05), PMDR= 5.9×10−45). Importantly, our data suggest that in lupus patients the presence of the HLA lupus-risk alleles in rs1270942 and rs3131379 increases the odds of also carrying the lupus-risk allele in IRF5 (rs2070197) by 17% and 16%, respectively (P= 0.0028 and 0.0047).
Conclusion
We provide evidence for gene-gene epistasis in systemic lupus erythematosus. These findings support a role for genetic interaction contributing to the complexity of lupus heritability.
doi:10.1002/art.33354
PMCID: PMC3268866  PMID: 21952918
12.  Identification of novel genetic susceptibility loci in African-American lupus patients using a candidate gene association study 
Arthritis and rheumatism  2011;63(11):3493-3501.
Objective
Candidate gene and genome-wide association studies have identified several disease susceptibility loci in lupus patients. These studies have been largely performed in European-derived and Asian lupus patients. In this study, we examine if some of these same susceptibility loci increase lupus risk in African-American individuals.
Methods
Single nucleotide polymorphisms tagging 15 independent lupus susceptibility loci were genotyped in a set of 1,724 lupus patients and 2,024 normal healthy controls of African-American descent. The loci examined included: PTPN22, FCGR2A, TNFSF4, STAT4, CTLA4, PDCD1, PXK, BANK1, MSH5 (HLA region), CFB (HLA region), C8orf13-BLK region, MBL2, KIAA1542, ITGAM, and MECP2/IRAK1.
Results
We provide the first evidence for genetic association between lupus and five susceptibility loci in African-American patients (C8orf13-BLK, BANK1, TNFSF4, KIAA1542 andCTLA4; P values= 8.0 × 10−6, 1.9 × 10−5, 5.7 × 10−5, 0.00099, 0.0045, respectively). Further, we confirm the genetic association between lupus and five additional lupus susceptibility loci (ITGAM, MSH5, CFB, STAT4, and FCGR2A; P values= 7.5 × 10−11, 5.2 × 10−8, 8.7 × 10−7, 0.0058, and 0.0070, respectively), and provide evidence for a genome-wide significance for the association between ITGAM and MSH5 (HLA region) for the first time in African-American lupus patients.
Conclusion
These findings provide evidence for novel genetic susceptibility loci for lupus in African-Americans and demonstrate that the majority of lupus susceptibility loci examined confer lupus risk across multiple ethnicities.
doi:10.1002/art.30563
PMCID: PMC3205224  PMID: 21792837
13.  Association of PPP2CA polymorphisms with SLE susceptibility in multiple ethnic groups 
Arthritis and rheumatism  2011;63(9):2755-2763.
Objective
T cells from patients with SLE express increased amounts of PP2Ac which contribute to decreased production of IL-2. Because IL-2 is important in the regulation of several aspects of the immune response, it has been proposed that PP2Ac contributes to the expression of SLE. This study was designed to determine whether genetic variants of PPP2AC are linked to the expression of SLE and specific clinical manifestations and account for the increased expression of PP2Ac.
Methods
We conducted a trans-ethnic study consisting of 8,695 SLE cases and 7,308 controls from four different ancestries. Eighteen single-nucleotide polymorphisms (SNPs) across the PPP2CA were genotyped using an Illumina custom array. PPP2CA expression in SLE and control T cells was analyzed by real-time PCR.
Results
A 32-kb haplotype comprised of multiple SNPs of PPP2CA showed significant association with SLE in Hispanic Americans (HA), European Americans (EA) and Asians but not in African-Americans (AA). Conditional analyses revealed that SNP rs7704116 in intron 1 showed consistently strong association with SLE across Asian, EA and HA populations (pmeta=3.8×10−7, OR=1.3[1.14–1.31]). In EA, the largest ethnic dataset, the risk A allele of rs7704116 was associated with the presence of renal disease, anti-dsDNA and anti-RNP antibodies. PPP2CA expression was approximately 2-fold higher in SLE patients carrying the rs7704116 AG genotype than those carrying GG genotype (p = 0.008).
Conclusion
Our data provide the first evidence for an association between PPP2CA polymorphisms and elevated PP2Ac transcript levels in T cells, which implicates a new molecular pathway for SLE susceptibility in EA, HA and Asians.
doi:10.1002/art.30452
PMCID: PMC3163110  PMID: 21590681
14.  Genetic Analyses of Interferon Pathway-Related Genes Reveals Multiple New Loci Associated with Systemic Lupus Erythematosus (SLE) 
Arthritis and rheumatism  2011;63(7):2049-2057.
Objective
The overexpression of interferon (IFN)-inducible genes is a prominent feature of SLE, serves as a marker for active and more severe disease, and is also observed in other autoimmune and inflammatory conditions. The genetic variations responsible for sustained activation of IFN responsive genes are unknown.
Methods
We systematically evaluated association of SLE with a total of 1,754 IFN-pathway related genes, including IFN-inducible genes known to be differentially expressed in SLE patients and their direct regulators. We performed a three-stage design where two cohorts (total n=939 SLE cases, 3,398 controls) were analyzed independently and jointly for association with SLE, and the results were adjusted for the number of comparisons.
Results
A total of 16,137 SNPs passed all quality control filters of which 316 demonstrated replicated association with SLE in both cohorts. Nine variants were further genotyped for confirmation in an average of 1,316 independent SLE cases and 3,215 independent controls. Association with SLE was confirmed for several genes, including the transmembrane receptor CD44 (rs507230, P = 3.98×10−12), cytokine pleiotrophin (PTN) (rs919581, P = 5.38×10−04), the heat-shock DNAJA1 (rs10971259, P = 6.31×10−03), and the nuclear import protein karyopherin alpha 1 (KPNA1) (rs6810306, P = 4.91×10−02).
Conclusion
This study expands the number of candidate genes associated with SLE and highlights the potential of pathway-based approaches for gene discovery. Identification of the causal alleles will help elucidate the molecular mechanisms responsible for activation of the IFN system in SLE.
doi:10.1002/art.30356
PMCID: PMC3128183  PMID: 21437871
15.  Fine mapping and trans-ethnic genotyping establish IL2/IL21 genetic association with lupus and localize this genetic effect to IL21 
Arthritis and rheumatism  2011;63(6):1689-1697.
Objective
Genetic association of the IL2/IL21 region at 4q27 has been previously reported in lupus and a number of autoimmune and inflammatory diseases. Herein, using a very large cohort of lupus patients and controls, we localize this genetic effect to the IL21 gene.
Methods
We genotyped 45 tag SNPs across the IL2/IL21 locus in two large independent lupus sample sets. We studied a European-derived set consisting of 4,248 lupus patients and 3,818 healthy controls, and an African-American set of 1,569 patients and 1,893 healthy controls. Imputation in 3,004 WTCCC additional control individuals was also performed. Genetic association between the genotyped markers was determined, and pair-wise conditional analysis was performed to localize the independent genetic effect in the IL2/IL21 locus in lupus.
Results
We established and confirmed the genetic association between IL2/IL21 and lupus. Using conditional analysis and trans-ethnic mapping, we localized the genetic effect in this locus to two SNPs in high linkage disequilibrium; rs907715 located within IL21 (OR=1.16 (1.10–1.22), P= 2.17 ×10−8), and rs6835457 located in the 3’-UTR flanking region of IL21 (OR= 1.11 (1.05–1.17), P= 9.35×10−5).
Conclusion
We have established the genetic association between lupus and IL2/IL21 with a genome-wide level of significance. Further, we localized this genetic association within the IL2/IL21 linkage disequilibrium block to IL21. If other autoimmune IL2/IL21 genetic associations are similarly localized, then the IL21 risk alleles would be predicted to operate in a fundamental mechanism that influences the course of a number of autoimmune disease processes.
doi:10.1002/art.30320
PMCID: PMC3106139  PMID: 21425124
16.  Role of MYH9 and APOL1 in African and non-African populations with Lupus Nephritis 
Genes and Immunity  2011;13(3):232-238.
Systemic lupus erythematosus (SLE) is a complex autoimmune disease characterized by autoantibody production and organ damage. Lupus nephritis (LN) is one of the most severe manifestations of SLE. Multiple studies reported associations between renal diseases and variants in the non-muscle myosin heavy chain 9 (MYH9) and the neighboring apolipoprotein L 1 (APOL1) genes. We evaluated 167 variants spanning MYH9 for association with LN in a multiethnic sample. The two previously identified risk variants in APOL1 were also tested for association with LN in European-Americans (EAs) (N = 579) and African-Americans (AAs) (N = 407). Multiple peaks of association exceeding a Bonferroni corrected p-value of p < 2.03 × 10−3 were observed between LN and MYH9 in EAs (N=4620), with the most pronounced association at rs2157257 (p = 4.7 × 10−4; odds ratio [OR]=1.205). A modest effect with MYH9 was also detected in Gullah (rs8136069, p = 0.0019, OR = 2.304). No association between LN and MYH9 was found in AAs, Asians, Amerindians or Hispanics. This study provides the first investigation of MYH9 in LN in non-Africans and of APOL1 in LN in any population and presents novel insight into the potential role of MYH9 in LN in EAs.
doi:10.1038/gene.2011.82
PMCID: PMC3330160  PMID: 22189356
MYH9; APOL1; lupus nephritis; systemic lupus erythematosus; multiethnic association study
17.  Association of Genetic Variants in Complement Factor H and Factor H-Related Genes with Systemic Lupus Erythematosus Susceptibility 
PLoS Genetics  2011;7(5):e1002079.
Systemic lupus erythematosus (SLE), a complex polygenic autoimmune disease, is associated with increased complement activation. Variants of genes encoding complement regulator factor H (CFH) and five CFH-related proteins (CFHR1-CFHR5) within the chromosome 1q32 locus linked to SLE, have been associated with multiple human diseases and may contribute to dysregulated complement activation predisposing to SLE. We assessed 60 SNPs covering the CFH-CFHRs region for association with SLE in 15,864 case-control subjects derived from four ethnic groups. Significant allelic associations with SLE were detected in European Americans (EA) and African Americans (AA), which could be attributed to an intronic CFH SNP (rs6677604, in intron 11, Pmeta = 6.6×10−8, OR = 1.18) and an intergenic SNP between CFHR1 and CFHR4 (rs16840639, Pmeta = 2.9×10−7, OR = 1.17) rather than to previously identified disease-associated CFH exonic SNPs, including I62V, Y402H, A474A, and D936E. In addition, allelic association of rs6677604 with SLE was subsequently confirmed in Asians (AS). Haplotype analysis revealed that the underlying causal variant, tagged by rs6677604 and rs16840639, was localized to a ∼146 kb block extending from intron 9 of CFH to downstream of CFHR1. Within this block, the deletion of CFHR3 and CFHR1 (CFHR3-1Δ), a likely causal variant measured using multiplex ligation-dependent probe amplification, was tagged by rs6677604 in EA and AS and rs16840639 in AA, respectively. Deduced from genotypic associations of tag SNPs in EA, AA, and AS, homozygous deletion of CFHR3-1Δ (Pmeta = 3.2×10−7, OR = 1.47) conferred a higher risk of SLE than heterozygous deletion (Pmeta = 3.5×10−4, OR = 1.14). These results suggested that the CFHR3-1Δ deletion within the SLE-associated block, but not the previously described exonic SNPs of CFH, might contribute to the development of SLE in EA, AA, and AS, providing new insights into the role of complement regulators in the pathogenesis of SLE.
Author Summary
Systemic lupus erythematosus (SLE) is a complex autoimmune disease, associated with increased complement activation. Previous studies have provided evidence for the presence of SLE susceptibility gene(s) in the chromosome 1q31-32 locus. Within 1q32, genes encoding complement regulator factor H (CFH) and five CFH-related proteins (CFHR1-CFHR5) may contribute to the development of SLE, because genetic variants of these genes impair complement regulation and predispose to various human diseases. In this study, we tested association of genetic variants in the region containing CFH and CFHRs with SLE. We identified genetic variants predisposing to SLE in European American, African American, and Asian populations, which might be attributed to the deletion of CFHR3 and CFHR1 genes but not previously identified disease-associated exonic variants of CFH. This study provides the first evidence for consistent association between CFH/CFHRs and SLE across multi-ancestral SLE datasets, providing new insights into the role of complement regulators in the pathogenesis of SLE.
doi:10.1371/journal.pgen.1002079
PMCID: PMC3102741  PMID: 21637784
18.  A polymorphism within interleukin-21 receptor (IL21R) confers risk for systemic lupus erythematosus 
Arthritis and rheumatism  2009;60(8):2402-2407.
Objective
Interleukin (IL) 21 is a member of the type I cytokine superfamily that exerts a variety of effects on the immune system including B cell activation, plasma cell differentiation, and immunoglobulin production. The expression of IL21R is reduced in B cells from lupus patients, while IL21 serum levels are increased in both lupus patients and some lupus-murine models. We recently reported that polymorphisms within the IL21 gene are associated with increased susceptibility to lupus. Herein, we examined the genetic association between SNPs within IL21R and lupus.
Methods
We genotyped 17 SNPs in the IL21R gene in two large cohorts of lupus patients and ethnically-matched healthy controls. Genotyping was performed with the Illumina BeadStation 500GX instrument using Illumina Infinum II genotyping assays.
Results
We identified and confirmed the association between rs3093301 within the IL21R gene and lupus in two independent European-derived and Hispanic cohorts (meta analysis odds ratio= 1.16, 95% CI= 1.08-1.25, meta analysis p=1.0×10-4).
Conclusion
We identified IL21R as a novel susceptibility gene for lupus.
doi:10.1002/art.24658
PMCID: PMC2782592  PMID: 19644854
19.  The Role of Genetic Variation Near Interferon-Kappa in Systemic Lupus Erythematosus 
Systemic lupus erythematosus (SLE) is a systemic autoimmune disease characterized by increased type I interferons (IFNs) and multiorgan inflammation frequently targeting the skin. IFN-kappa is a type I IFN expressed in skin. A pooled genome-wide scan implicated the IFNK locus in SLE susceptibility. We studied IFNK single nucleotide polymorphisms (SNPs) in 3982 SLE cases and 4275 controls, composed of European (EA), African-American (AA), and Asian ancestry. rs12553951C was associated with SLE in EA males (odds ratio = 1.93, P = 2.5 × 10−4), but not females. Suggestive associations with skin phenotypes in EA and AA females were found, and these were also sex-specific. IFNK SNPs were associated with increased serum type I IFN in EA and AA SLE patients. Our data suggest a sex-dependent association between IFNK SNPs and SLE and skin phenotypes. The serum IFN association suggests that IFNK variants could influence type I IFN producing plasmacytoid dendritic cells in affected skin.
doi:10.1155/2010/706825
PMCID: PMC2914299  PMID: 20706608
20.  High density genotyping of STAT4 gene reveals multiple haplotypic associations with Systemic Lupus Erythematosus in different racial groups 
Arthritis and rheumatism  2009;60(4):1085-1095.
Objective
Systemic lupus erythematosus (SLE) is the prototypic systemic autoimmune disorder with complex etiology and a strong genetic component. Recently, gene products involved in the interferon pathway have been under intense investigation in SLE pathogenesis. STAT1 and STAT4 are transcription factors that play key roles in the interferon and Th1 signaling pathways, making them attractive candidates for SLE susceptibility.
Methods
Fifty-six single-nucleotide polymorphisms (SNPs) across STAT1 and STAT4 genes on chromosome 2 were genotyped using Illumina platform as a part of extensive association study in a large collection of 9923 lupus cases and controls from different racial groups. DNA from patients and controls was obtained from peripheral blood. Principal component analyses and population based case-control association analyses were performed and the p values, FDR q values and Odds ratios with 95% confidence intervals (95% CIs) were calculated.
Results
We observed strong genetic associations with SLE and multiple SNPs located within the STAT4 gene in different ethnicities (Fisher combined p= 7.02×10−25). In addition to strong confirmation of the association in the 3rd intronic region of this gene reported previously, we identified additional haplotypic association across STAT4 gene and in particular a common risk haplotype that is found in multiple racial groups. In contrast, only a relatively weak suggestive association was observed with STAT1, probably due to the proximity to STAT4.
Conclusion
Our findings indicate that the STAT4 gene is likely to be a crucial component in SLE pathogenesis among multiple racial groups. The functional effects of this association, when revealed, might improve our understanding of the disease and provide new therapeutic targets.
doi:10.1002/art.24387
PMCID: PMC2776081  PMID: 19333953
21.  Complement receptor 2 polymorphisms associated with systemic lupus erythematosus modulate alternative splicing 
Genes and immunity  2009;10(5):457-469.
Genetic factors influence susceptibility to systemic lupus erythematosus (SLE). A recent family-based analysis in Caucasian and Chinese populations provided evidence for association of single-nucleotide polymorphisms (SNPs) in the complement receptor 2 (CR2/CD21) gene with SLE. Here we confirmed this result in a case-control analysis of an independent European-derived population including 2084 patients with SLE and 2853 healthy controls. A haplotype formed by the minor alleles of three CR2 SNPs (rs1048971, rs17615, rs4308977) showed significant association with decreased risk of SLE (30.4% in cases vs. 32.6% in controls, P = 0.016, OR = 0.90 [0.82-0.98]). Two of these SNPs are in exon 10, directly 5′ of an alternatively spliced exon preferentially expressed in follicular dendritic cells (FDC), and the third is in the alternatively spliced exon. Effects of these SNPs as well as a fourth SNP in exon 11 (rs17616) on alternative splicing were evaluated. We found that the minor alleles of these SNPs decreased splicing efficiency of exon 11 both in vitro and ex vivo. These findings further implicate CR2 in the pathogenesis of SLE and suggest that CR2 variants alter the maintenance of tolerance and autoantibody production in the secondary lymphoid tissues where B cells and FDCs interact.
doi:10.1038/gene.2009.27
PMCID: PMC2714407  PMID: 19387458
Alternative splicing; systemic lupus erythematosus; complement receptors; single-nucleotide polymorphisms; B cells; follicular dendritic cells

Results 1-21 (21)