PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-3 (3)
 

Clipboard (0)
None
Journals
Year of Publication
Document Types
1.  Peripheral blood gene expression profiling in Sjögren’s syndrome 
Genes and Immunity  2009;10(4):285-296.
Sjögren’s syndrome (SS) is a common chronic autoimmune disease characterized by lymphocytic infiltration of exocrine glands. Affected cases commonly present with oral and ocular dryness, thought to be the result of inflammatory cell-mediated gland dysfunction. To identify important molecular pathways involved in SS, we used high-density microarrays to define global gene expression profiles in peripheral blood. We first analyzed 21 SS cases and 23 controls and identified a prominent pattern of overexpressed genes that are inducible by interferons (IFNs). These results were confirmed by evaluation of a second independent dataset of 17 SS cases and 22 controls. Additional inflammatory and immune-related pathways with altered expression patterns in SS cases included B and T cell receptor, IGF-1, GM-CSF, PPARα/RXRα, and PI3/AKT signaling. Exploration of these data for relationships to clinical features of disease revealed that expression levels for most IFN-inducible genes were positively correlated with titers of anti-Ro/SSA (P<0.001) and anti-La/SSB (P<0.001) autoantibodies. Diagnostic and therapeutic approaches targeting IFN signaling pathway may prove most effective in the subset of SS cases who produce anti-Ro/SSA and anti-La/SSB autoantibodies. Our results strongly support innate and adaptive immune processes in the pathogenesis of SS and provide numerous candidate disease markers for further study.
doi:10.1038/gene.2009.20
PMCID: PMC3273959  PMID: 19404300
2.  Meta-analysis and Imputation Identifies a 109 kb Risk Haplotype Spanning TNFAIP3 Associated with Lupus Nephritis and Hematologic Manifestations 
Genes and immunity  2009;10(5):470-477.
TNFAIP3 encodes the ubiquitin modifying enzyme, A20, a key regulator of inflammatory signaling pathways. We previously reported association between TNFAIP3 variants and systemic lupus erythematosus (SLE). In order to further localize the risk variant(s), we performed a meta-analysis using genetic data available from two Caucasian case/control datasets (1453 total cases, 3381 total controls) and 713 SLE trio families. The best result was found at rs5029939 (P = 1.67 × 10−14, OR = 2.09, 95% CI 1.68–2.60). We then imputed SNPs from the CEU Phase II HapMap using genotypes from 431 SLE cases and 2155 controls. Imputation identified eleven SNPs in addition to three observed SNPs, which together, defined a 109 kb SLE risk segment surrounding TNFAIP3. When evaluating whether the rs5029939 risk allele was associated with SLE clinical manifestations, we observed that heterozygous carriers of the TNFAIP3 risk allele at rs5029939 have a two-fold increased risk of developing renal or hematologic manifestations compared to homozygous non-risk subjects. In summary, our study strengthens the genetic evidence that variants in the region of TNFAIP3 influence risk for SLE, particularly in patients with renal and hematologic manifestations, and narrows the risk effect to a 109 kb DNA segment that spans the TNFAIP3 gene.
doi:10.1038/gene.2009.31
PMCID: PMC2714405  PMID: 19387456
systemic lupus erythematosus; TNFAIP3; imputation; meta-analysis
3.  Genetic Variants Near TNFAIP3 on 6q23 are Associated with Systemic Lupus Erythematosus (SLE) 
Nature genetics  2008;40(9):1059-1061.
SLE is an autoimmune disease influenced by genetic and environmental components. We performed a genome-wide association scan (GWAS) and observed novel association evidence with a variant inTNFAIP3(rs5029939, P = 2.89×10−12, OR = 2.29). We also found evidence of two independent signals of association to SLE risk, including one described in Rheumatoid Arthritis. These results establish that genetic variation inTNFAIP3contributes to differential risk for SLE and RA.
doi:10.1038/ng.200
PMCID: PMC2772171  PMID: 19165918

Results 1-3 (3)