PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-6 (6)
 

Clipboard (0)
None
Journals
Year of Publication
Document Types
1.  CSK regulatory polymorphism is associated with systemic lupus erythematosus and influences B cell signaling and activation 
Nature genetics  2012;44(11):1227-1230.
C-src tyrosine kinase, Csk, physically interacts with the intracellular phosphatase Lyp (PTPN22) and can modify the activation state of downstream Src kinases, such as Lyn, in lymphocytes. We identified an association of Csk with systemic lupus erythematosus (SLE) and refined its location to an intronic polymorphism rs34933034 (OR 1.32, p = 1.04 × 10−9). The risk allele is associated with increased CSK expression and augments inhibitory phosphorylation of Lyn. In carriers of the risk allele, B cell receptor (BCR)-mediated activation of mature B cells, as well as plasma IgM, are increased. Moreover, the fraction of transitional B cells is doubled in the cord blood of carriers of the risk allele compared to non-risk haplotypes due to an expansion of the late transitional cells, a stage targeted by selection mechanisms. This suggests that the Lyp-Csk complex increases susceptibility to lupus at multiple maturation and activation points of B cells.
doi:10.1038/ng.2439
PMCID: PMC3715052  PMID: 23042117
2.  MicroRNA-3148 Modulates Allelic Expression of Toll-Like Receptor 7 Variant Associated with Systemic Lupus Erythematosus 
PLoS Genetics  2013;9(2):e1003336.
We previously reported that the G allele of rs3853839 at 3′untranslated region (UTR) of Toll-like receptor 7 (TLR7) was associated with elevated transcript expression and increased risk for systemic lupus erythematosus (SLE) in 9,274 Eastern Asians [P = 6.5×10−10, odds ratio (OR) (95%CI) = 1.27 (1.17–1.36)]. Here, we conducted trans-ancestral fine-mapping in 13,339 subjects including European Americans, African Americans, and Amerindian/Hispanics and confirmed rs3853839 as the only variant within the TLR7-TLR8 region exhibiting consistent and independent association with SLE (Pmeta = 7.5×10−11, OR = 1.24 [1.18–1.34]). The risk G allele was associated with significantly increased levels of TLR7 mRNA and protein in peripheral blood mononuclear cells (PBMCs) and elevated luciferase activity of reporter gene in transfected cells. TLR7 3′UTR sequence bearing the non-risk C allele of rs3853839 matches a predicted binding site of microRNA-3148 (miR-3148), suggesting that this microRNA may regulate TLR7 expression. Indeed, miR-3148 levels were inversely correlated with TLR7 transcript levels in PBMCs from SLE patients and controls (R2 = 0.255, P = 0.001). Overexpression of miR-3148 in HEK-293 cells led to significant dose-dependent decrease in luciferase activity for construct driven by TLR7 3′UTR segment bearing the C allele (P = 0.0003). Compared with the G-allele construct, the C-allele construct showed greater than two-fold reduction of luciferase activity in the presence of miR-3148. Reduced modulation by miR-3148 conferred slower degradation of the risk G-allele containing TLR7 transcripts, resulting in elevated levels of gene products. These data establish rs3853839 of TLR7 as a shared risk variant of SLE in 22,613 subjects of Asian, EA, AA, and Amerindian/Hispanic ancestries (Pmeta = 2.0×10−19, OR = 1.25 [1.20–1.32]), which confers allelic effect on transcript turnover via differential binding to the epigenetic factor miR-3148.
Author Summary
Systemic lupus erythematosus (SLE) is a debilitating autoimmune disease contributed to by excessive innate immune activation involving toll-like receptors (TLRs, particularly TLR7/8/9) and type I interferon (IFN) signaling pathways. TLR7 responds against RNA–containing nuclear antigens and activates IFN-α pathway, playing a pivotal role in the development of SLE. While a genomic duplication of Tlr7 promotes lupus-like disease in the Y-linked autoimmune accelerator (Yaa) murine model, the lack of common copy number variations at TLR7 in humans led us to identify a functional single nucleotide polymorphism (SNP), rs3853839 at 3′ UTR of the TLR7 gene, associated with SLE susceptibility in Eastern Asians. In this study, we fine-mapped the TLR7-TLR8 region and confirmed rs3853839 exhibiting the strongest association with SLE in European Americans, African Americans, and Amerindian/Hispanics. Individuals carrying the risk G allele of rs3853839 exhibited increased TLR7 expression at the both mRNA and protein level and decreased transcript degradation. MicroRNA-3148 (miR-3148) downregulated the expression of non-risk allele (C) containing transcripts preferentially, suggesting a likely mechanism for increased TLR7 levels in risk-allele carriers. This trans-ancestral mapping provides evidence for the global association with SLE risk at rs3853839, which resides in a microRNA–gene regulatory site affecting TLR7 expression.
doi:10.1371/journal.pgen.1003336
PMCID: PMC3585142  PMID: 23468661
3.  Differential Genetic Associations for Systemic Lupus Erythematosus Based on Anti–dsDNA Autoantibody Production 
PLoS Genetics  2011;7(3):e1001323.
Systemic lupus erythematosus (SLE) is a clinically heterogeneous, systemic autoimmune disease characterized by autoantibody formation. Previously published genome-wide association studies (GWAS) have investigated SLE as a single phenotype. Therefore, we conducted a GWAS to identify genetic factors associated with anti–dsDNA autoantibody production, a SLE–related autoantibody with diagnostic and clinical importance. Using two independent datasets, over 400,000 single nucleotide polymorphisms (SNPs) were studied in a total of 1,717 SLE cases and 4,813 healthy controls. Anti–dsDNA autoantibody positive (anti–dsDNA +, n = 811) and anti–dsDNA autoantibody negative (anti–dsDNA –, n = 906) SLE cases were compared to healthy controls and to each other to identify SNPs associated specifically with these SLE subtypes. SNPs in the previously identified SLE susceptibility loci STAT4, IRF5, ITGAM, and the major histocompatibility complex were strongly associated with anti–dsDNA + SLE. Far fewer and weaker associations were observed for anti–dsDNA – SLE. For example, rs7574865 in STAT4 had an OR for anti–dsDNA + SLE of 1.77 (95% CI 1.57–1.99, p = 2.0E-20) compared to an OR for anti–dsDNA – SLE of 1.26 (95% CI 1.12–1.41, p = 2.4E-04), with pheterogeneity<0.0005. SNPs in the SLE susceptibility loci BANK1, KIAA1542, and UBE2L3 showed evidence of association with anti–dsDNA + SLE and were not associated with anti–dsDNA – SLE. In conclusion, we identified differential genetic associations with SLE based on anti–dsDNA autoantibody production. Many previously identified SLE susceptibility loci may confer disease risk through their role in autoantibody production and be more accurately described as autoantibody propensity loci. Lack of strong SNP associations may suggest that other types of genetic variation or non-genetic factors such as environmental exposures have a greater impact on susceptibility to anti–dsDNA – SLE.
Author Summary
Systemic lupus erythematosus (SLE) is a chronic autoimmune disease that can involve virtually any organ system. SLE patients produce antibodies that bind to their own cells and proteins (autoantibodies) which can cause irreversible organ damage. One particular SLE–related autoantibody directed at double-stranded DNA (anti–dsDNA) is associated with kidney involvement and more severe disease. Previous genome-wide association studies (GWAS) in SLE have studied SLE itself, not particular SLE manifestations. Therefore, we conducted this GWAS of anti–dsDNA autoantibody production to identify genetic associations with this clinically important autoantibody. We found that many previously identified SLE–associated genes are more strongly associated with anti–dsDNA autoantibody production than SLE itself, and they may be more accurately described as autoantibody propensity genes. No strong genetic associations were observed for SLE patients who do not produce anti–dsDNA autoantibodies, suggesting that other factors may have more influence in developing this type of SLE. Further investigation of these autoantibody propensity genes may lead to greater insight into the causes of autoantibody production and organ damage in SLE.
doi:10.1371/journal.pgen.1001323
PMCID: PMC3048371  PMID: 21408207
4.  Risk Alleles for Systemic Lupus Erythematosus in a Large Case-Control Collection and Associations with Clinical Subphenotypes 
PLoS Genetics  2011;7(2):e1001311.
Systemic lupus erythematosus (SLE) is a genetically complex disease with heterogeneous clinical manifestations. Recent studies have greatly expanded the number of established SLE risk alleles, but the distribution of multiple risk alleles in cases versus controls and their relationship to subphenotypes have not been studied. We studied 22 SLE susceptibility polymorphisms with previous genome-wide evidence of association (p<5×10−8) in 1919 SLE cases from 9 independent Caucasian SLE case series and 4813 independent controls. The mean number of risk alleles in cases was 15.1 (SD 3.1) while the mean in controls was 13.1 (SD 2.8), with trend p = 4×10−128. We defined a genetic risk score (GRS) for SLE as the number of risk alleles with each weighted by the SLE risk odds ratio (OR). The OR for high-low GRS tertiles, adjusted for intra-European ancestry, sex, and parent study, was 4.4 (95% CI 3.8–5.1). We studied associations of individual SNPs and the GRS with clinical manifestations for the cases: age at diagnosis, the 11 American College of Rheumatology classification criteria, and double-stranded DNA antibody (anti-dsDNA) production. Six subphenotypes were significantly associated with the GRS, most notably anti-dsDNA (ORhigh-low = 2.36, p = 9e−9), the immunologic criterion (ORhigh-low = 2.23, p = 3e−7), and age at diagnosis (ORhigh-low = 1.45, p = 0.0060). Finally, we developed a subphenotype-specific GRS (sub-GRS) for each phenotype with more power to detect cumulative genetic associations. The sub-GRS was more strongly associated than any single SNP effect for 5 subphenotypes (the above plus hematologic disorder and oral ulcers), while single loci are more significantly associated with renal disease (HLA-DRB1, OR = 1.37, 95% CI 1.14–1.64) and arthritis (ITGAM, OR = 0.72, 95% CI 0.59–0.88). We did not observe significant associations for other subphenotypes, for individual loci or the sub-GRS. Thus our analysis categorizes SLE subphenotypes into three groups: those having cumulative, single, and no known genetic association with respect to the currently established SLE risk loci.
Author Summary
Systemic lupus erythematosus is a chronic disabling autoimmune disease, most commonly striking women in their thirties or forties. It can cause a wide variety of clinical manifestations, including kidney disease, arthritis, and skin disorders. Prognosis varies greatly depending on these clinical features, with kidney disease and related characteristics leading to greater morbidity and mortality. It is also complex genetically; while lupus runs in families, genes increase one's risk for lupus but do not fully determine the outcome. The interactions of multiple genes and/or interactions between genes and environmental factors may cause lupus, but the causes and disease pathways of this very heterogeneous disease are not well understood. By examining relationships between the presence of multiple lupus risk genes, lupus susceptibility, and clinical manifestations, we hope to better understand how lupus is triggered and by what biological pathways it progresses. We show in this work that certain clinical manifestations of lupus are highly associated with cumulative genetic variations, i.e. multiple risk alleles, while others are associated with a single variation or none at all.
doi:10.1371/journal.pgen.1001311
PMCID: PMC3040652  PMID: 21379322
5.  European population substructure is associated with mucocutaneous manifestations and autoantibody production in systemic lupus erythematosus 
Arthritis and rheumatism  2009;60(8):2448-2456.
Objective
To determine whether genetic substructure in European-derived populations is associated with specific manifestations of systemic lupus erythematosus (SLE), including mucocutaneous phenotypes, autoantibody production, and renal disease.
Methods
SLE patients of European descent (n=1754) from 8 case collections were genotyped for over 1,400 ancestry informative markers that define a north/south gradient of European substructure. Based on these genetic markers, we used the STRUCTURE program to characterize each SLE patient in terms of percent northern (vs. southern) European ancestry. Non-parametric methods, including tests of trend, were used to identify associations between northern European ancestry and specific SLE manifestations.
Results
In multivariate analyses, increasing levels of northern European ancestry were significantly associated with photosensitivity (ptrend=0.0021, OR for highest quartile of northern European ancestry compared to lowest quartile 1.64, 95% CI 1.13–2.35) and discoid rash (ptrend=0.014, ORhigh-low 1.93, 95% CI 0.98–3.83). In contrast, northern European ancestry was protective for anticardiolipin (ptrend=1.6 × 10−4, ORhigh-low 0.46, 95% CI 0.30–0.69) and anti-dsDNA (ptrend=0.017, ORhigh-low 0.67, 95% CI 0.46–0.96) autoantibody production.
Conclusions
This study demonstrates that specific SLE manifestations vary according to northern vs. southern European ancestry. Thus, genetic ancestry may contribute to the clinical heterogeneity and variation in disease outcomes among SLE patients of European descent. Moreover, these results suggest that genetic studies of SLE subphenotypes will need to carefully address issues of population substructure due to genetic ancestry.
doi:10.1002/art.24707
PMCID: PMC2739103  PMID: 19644962
6.  Evaluation of imputation-based association in and around the integrin-α-M (ITGAM) gene and replication of robust association between a non-synonymous functional variant within ITGAM and systemic lupus erythematosus (SLE) 
Human Molecular Genetics  2009;18(6):1171-1180.
We recently identified a novel non-synonymous variant, rs1143679, at exon 3 of the ITGAM gene associated with systemic lupus erythematosus (SLE) susceptibility in European-Americans (EAs) and African-Americans. Using genome-wide association approach, three other studies also independently reported an association between SLE susceptibility and ITGAM or ITGAM-ITGAX region. The primary objectives of this study are to assess whether single or multiple causal variants from the same gene or any nearby gene(s) are involved in SLE susceptibility and to confirm a robust ITGAM association across nine independent data sets (n = 8211). First, we confirmed our previously reported association of rs1143679 (risk allele ‘A’) with SLE in EAs (P = 1.0 × 10−8) and Hispanic-Americans (P = 2.9 × 10−5). Secondly, using a comprehensive imputation-based association test, we found that ITGAM is one of the major non-human leukocyte antigen susceptibility genes for SLE, and the strongest association for EA is the same coding variant rs1143679 (log10Bayes factor=20, P = 6.17 × 10−24). Thirdly, we determined the robustness of rs1143679 association with SLE across three additional case–control samples, including UK (P = 6.2 × 10−8), Colombian (P = 3.6 × 10−7), Mexican (P = 0.002), as well as two independent sets of trios from UK (PTDT = 1.4 × 10−5) and Mexico (PTDT = 0.015). A meta-analysis combing all independent data sets greatly reinforces the association (Pmeta = 7.1 × 10−50, odds ratio = 1.83, 95% confidence interval = 1.69–1.98, n = 10 046). However, this ITGAM association was not observed in the Korean or Japanese samples, in which rs1143679 is monomorphic for the non-risk allele (G). Taken together along with our earlier findings, these results demonstrate that the coding variant, rs1143679, best explains the ITGAM-SLE association, especially in European- and African-derived populations, but not in Asian populations.
doi:10.1093/hmg/ddp007
PMCID: PMC2649018  PMID: 19129174

Results 1-6 (6)