PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-2 (2)
 

Clipboard (0)
None
Journals
Authors
more »
Year of Publication
Document Types
1.  Polymorphism at the TNF superfamily gene TNFSF4 confers susceptibility to systemic lupus erythematosus 
Nature genetics  2007;40(1):83-89.
Systemic lupus erythematosus (SLE) is a multisystem complex autoimmune disease of uncertain etiology (OMIM 152700). Over recent years a genetic component to SLE susceptibility has been established1–3. Recent successes with association studies in SLE have identified genes including IRF5 (refs. 4,5) and FCGR3B6. Two tumor necrosis factor (TNF) superfamily members located within intervals showing genetic linkage with SLE are TNFSF4 (also known as OX40L; 1q25), which is expressed on activated antigen-presenting cells (APCs)7,8 and vascular endothelial cells9, and also its unique receptor, TNFRSF4 (also known as OX40; 1p36), which is primarily expressed on activated CD4+ T cells10. TNFSF4 produces a potent co-stimulatory signal for activated CD4+ T cells after engagement of TNFRSF4 (ref. 11). Using both a family-based and a case-control study design, we show that the upstream region of TNFSF4 contains a single risk haplotype for SLE, which is correlated with increased expression of both cell-surface TNFSF4 and the TNFSF4 transcript. We hypothesize that increased expression of TNFSF4 predisposes to SLE either by quantitatively augmenting T cell–APC interaction or by influencing the functional consequences of T cell activation via TNFRSF4.
doi:10.1038/ng.2007.47
PMCID: PMC3705866  PMID: 18059267
2.  Genetic linkage and transmission disequilibrium of marker haplotypes at chromosome 1q41 in human systemic lupus erythematosus 
Arthritis Research  2001;3(5):299-305.
Systemic lupus erythematosus (SLE) is a chronic autoimmune disease characterized by the production of autoantibodies to a wide range of self-antigens. Recent genome screens have implicated numerous chromosomal regions as potential SLE susceptibility loci. Among these, the 1q41 locus is of particular interest, because evidence for linkage has been found in several independent SLE family collections. Additionally, the 1q41 locus appears to be syntenic with a susceptibility interval identified in the NZM2410 mouse model for SLE. Here, we report the results of genotyping of 11 microsatellite markers within the 1q41 region in 210 SLE sibpair and 122 SLE trio families. These data confirm the modest evidence for linkage at 1q41 in our family collection (LOD = 1.21 at marker D1S2616). Evidence for significant linkage disequilibrium in this interval was also found. Multiple markers in the region exhibit transmission disequilibrium, with the peak single marker multiallelic linkage disequilibrium noted at D1S490 (pedigree disequilibrium test [PDT] global P value = 0.0091). Two- and three-marker haplotypes from the 1q41 region similarly showed strong transmission distortion in the collection of 332 SLE families. The finding of linkage together with significant transmission disequilibrium provides strong evidence for a susceptibility locus at 1q41 in human SLE.
PMCID: PMC64842  PMID: 11549371
1q41; autoimmunity; linkage; systemic lupus erythematosus; transmission disequilibrium

Results 1-2 (2)