PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-2 (2)
 

Clipboard (0)
None
Journals
Authors
more »
Year of Publication
Document Types
1.  Monocyte Chemoattractant Protein–1 Blockade Inhibits Lung Cancer Tumor Growth by Altering Macrophage Phenotype and Activating CD8+ Cells 
The role of chemokines in the pathogenesis of lung cancer has been increasingly appreciated. Monocyte chemoattractant protein–1 (MCP-1, also known as CCL2) is secreted from tumor cells and associated tumor stromal cells. The blockade of CCL2, as mediated by neutralizing antibodies, was shown to reduce tumorigenesis in several solid tumors, but the role of CCL2 in lung cancer remains controversial, with evidence of both protumorigenic and antitumorigenic effects. We evaluated the effects and mechanisms of CCL2 blockade in several animal models of non–small-cell lung cancer (NSCLC). Anti-murine–CCL2 monoclonal antibodies were administered in syngeneic flank and orthotopic models of NSCLC. CCL2 blockade significantly slowed the growth of primary tumors in all models studied, and inhibited lung metastases in a model of spontaneous lung metastases of NSCLC. In contrast to expectations, no significant effect of treatment was evident in the number of tumor-associated macrophages recruited into the tumor after CCL2 blockade. However, a change occurred in the polarization of tumor-associated macrophages to a more antitumor phenotype after CCL2 blockade. This was associated with the activation of cytotoxic CD8+ T lymphocytes (CTLs). The antitumor effects of CCL2 blockade were completely lost in CB-17 severe combined immunodeficient mice or after CD8 T-cell depletion. Our data from NSCLC models show that CCL2 blockade can inhibit the tumor growth of primary and metastatic disease. The mechanisms of CCL2 blockade include an alteration of the tumor macrophage phenotype and the activation of CTLs. Our work supports further evaluation of CCL2 blockade in thoracic malignancies.
doi:10.1165/rcmb.2010-0080OC
PMCID: PMC3049234  PMID: 20395632
tumor immunology; CCL2; lung cancer; mesothelioma; tumor-associated macrophages
2.  CCL2 Blockade Augments Cancer Immunotherapy 
Cancer research  2009;70(1):109.
Since an immuno-inhibitory environment exists within tumors, successful vaccines will likely require additional approaches to alter the tumor microenvironment. Monocyte chemoattractant proteins (such as CCL2) are produced by many tumors and have both direct and indirect immuno-inhibitory effects. We hypothesized that CCL2 blockade would reduce immunosuppression and augment vaccine immunotherapy. Anti-murine-CCL2/CCL12 monoclonal antibodies were administered in three immunotherapy models: one aimed at the HPV-E7 antigen expressed by a non-small cell lung cancer line, one targeted to mesothelin expressed by a mesothelioma cell line, and one using an adenovirus expressing Interferon-α to treat a non-immunogenic, non-small cell lung cancer line. We evaluated the effect of the combination treatment on tumor growth and assessed the mechanism of these changes by evaluating cytotoxic T cells, immunosuppressive cells, and the tumor microenvironment. Administration of anti-CCL2/CCL12 antibodies along with the vaccines markedly augmented efficacy with enhanced reduction in tumor volume and cures of approximately half of the tumors. The combined treatment generated more total intra-tumoral CD8+ T-cells that were more activated and more anti-tumor antigen specific, as measured by tetramer evaluation. Another important potential mechanism was reduction in intratumoral T-regulatory (T-reg) cells. CCL2 appears to be a key proximal cytokine mediating immunosuppression in tumors. Its blockade augments CD8+ T cell immune response to tumors elicited by vaccines via multifactorial mechanisms. These observations suggest that combining CCL2 neutralization with vaccines should be considered in future immunotherapy trials.
doi:10.1158/0008-5472.CAN-09-2326
PMCID: PMC2821565  PMID: 20028856
CCL2; Cancer immunotherapy; Lung Cancer; Mesothelioma; T-lymphocytes

Results 1-2 (2)