PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-6 (6)
 

Clipboard (0)
None
Journals
Year of Publication
Document Types
1.  Virulence of Endemic Nonpigmented Northern Australian Staphylococcus aureus Clone (Clonal Complex 75, S. argenteus) Is Not Augmented by Staphyloxanthin 
The Journal of Infectious Diseases  2013;208(3):520-527.
Staphylococcus aureus clonal complex 75 (herein referred to as S. argenteus) lacks the carotenoid pigment operon, crtOPQMN, responsible for production of the putative virulence factor, staphyloxanthin. Although a common cause of community-onset skin infections among Indigenous populations in northern Australia, this clone is infrequently isolated from hospital-based patients with either bacteremic or nonbacteremic infections. We hypothesized that S. argenteus would have attenuated virulence compared to other S. aureus strains due to its staphyloxanthin “deficiency.” Compared to prototypical S. aureus strains, S. argenteus was more susceptible to oxidative stress and neutrophil killing in vitro and had reduced virulence in murine sepsis and skin infection models. Transformation with pTX-crtOPQMN resulted in staphyloxanthin expression and increased resistance to oxidative stress in vitro. However, neither resistance to neutrophil killing nor in vivo virulence was increased. Thus, reduced virulence of S. argenteus in these models is due to mechanisms unrelated to lack of staphyloxanthin production.
doi:10.1093/infdis/jit173
PMCID: PMC3699000  PMID: 23599317
Staphylococcus aureus; staphyloxanthin; virulence; Australia; carotenoid pigment
2.  Presence of Genes Encoding Panton-Valentine Leukocidin Is Not the Primary Determinant of Outcome in Patients with Hospital-Acquired Pneumonia Due to Staphylococcus aureus 
Journal of Clinical Microbiology  2012;50(3):848-856.
The impact of Panton-Valentine leukocidin (PVL) on the outcome in Staphylococcus aureus pneumonia is controversial. We genotyped S. aureus isolates from patients with hospital-acquired pneumonia (HAP) enrolled in two registrational multinational clinical trials for the genetic elements carrying pvl and 30 other virulence genes. A total of 287 isolates (173 methicillin-resistant S. aureus [MRSA] and 114 methicillin-susceptible S. aureus [MSSA] isolates) from patients from 127 centers in 34 countries for whom clinical outcomes of cure or failure were available underwent genotyping. Of these, pvl was detected by PCR and its product confirmed in 23 isolates (8.0%) (MRSA, 18/173 isolates [10.4%]; MSSA, 5/114 isolates [4.4%]). The presence of pvl was not associated with a higher risk for clinical failure (4/23 [17.4%] versus 48/264 [18.2%]; P = 1.00) or mortality. These findings persisted after adjustment for multiple potential confounding variables. No significant associations between clinical outcome and (i) presence of any of the 30 other virulence genes tested, (ii) presence of specific bacterial clone, (iii) levels of alpha-hemolysin, or (iv) delta-hemolysin production were identified. This study suggests that neither pvl presence nor in vitro level of alpha-hemolysin production is the primary determinant of outcome among patients with HAP caused by S. aureus.
doi:10.1128/JCM.06219-11
PMCID: PMC3295120  PMID: 22205797
3.  Dusp3 and Psme3 Are Associated with Murine Susceptibility to Staphylococcus aureus Infection and Human Sepsis 
PLoS Pathogens  2014;10(6):e1004149.
Using A/J mice, which are susceptible to Staphylococcus aureus, we sought to identify genetic determinants of susceptibility to S. aureus, and evaluate their function with regard to S. aureus infection. One QTL region on chromosome 11 containing 422 genes was found to be significantly associated with susceptibility to S. aureus infection. Of these 422 genes, whole genome transcription profiling identified five genes (Dcaf7, Dusp3, Fam134c, Psme3, and Slc4a1) that were significantly differentially expressed in a) S. aureus –infected susceptible (A/J) vs. resistant (C57BL/6J) mice and b) humans with S. aureus blood stream infection vs. healthy subjects. Three of these genes (Dcaf7, Dusp3, and Psme3) were down-regulated in susceptible vs. resistant mice at both pre- and post-infection time points by qPCR. siRNA-mediated knockdown of Dusp3 and Psme3 induced significant increases of cytokine production in S. aureus-challenged RAW264.7 macrophages and bone marrow derived macrophages (BMDMs) through enhancing NF-κB signaling activity. Similar increases in cytokine production and NF-κB activity were also seen in BMDMs from CSS11 (C57BL/6J background with chromosome 11 from A/J), but not C57BL/6J. These findings suggest that Dusp3 and Psme3 contribute to S. aureus infection susceptibility in A/J mice and play a role in human S. aureus infection.
Author Summary
Staphylococcus aureus causes life-threatening infections in humans. Host genetic determinants influence the outcome of S. aureus infection, yet are poorly understood. Susceptible A/J and resistant C57BL/6J mice provide a unique platform to study the genetic difference responsible for variable host response to S. aureus infection. We showed that chromosome 11 in A/J was responsible for susceptibility to S. aureus. We further identified a QTL locus on Chromosome 11 significantly associated with S. aureus susceptibility. Five genes in the QTL (Dcaf7, Dusp3, Fam134c, Psme3, and Slc4a1) were significantly differently expressed in a) susceptible vs. resistant mice, and b) humans with S. aureus blood stream infection vs. healthy human subjects. Three genes (Dusp3, Psme3, and Dcaf7) were down-regulated in susceptible A/J mice. siRNA-mediated knockdown of Dusp3 and Psme3 in bone marrow derived macrophage (BMDMs) significantly enhanced cytokine responses through NF-κB activity upon S. aureus challenge in a pattern that was also present in S. aureus-challenged BMDMs from susceptible CSS11 (chr. 11 from A/J but otherwise C57BL/6J) mice, but not resistant C57BL/6J mice. These findings suggest that Dusp3 and Psme3 contribute to S. aureus infection susceptibility in A/J mice and play a role in human S. aureus infection.
doi:10.1371/journal.ppat.1004149
PMCID: PMC4047107  PMID: 24901344
4.  Host Gene Expression Profiling and In Vivo Cytokine Studies to Characterize the Role of Linezolid and Vancomycin in Methicillin-Resistant Staphylococcus aureus (MRSA) Murine Sepsis Model 
PLoS ONE  2013;8(4):e60463.
Linezolid (L), a potent antibiotic for Methicillin Resistant Staphylococcus aureus (MRSA), inhibits bacterial protein synthesis. By contrast, vancomycin (V) is a cell wall active agent. Here, we used a murine sepsis model to test the hypothesis that L treatment is associated with differences in bacterial and host characteristics as compared to V. Mice were injected with S. aureus USA300, and then intravenously treated with 25 mg/kg of either L or V at 2 hours post infection (hpi). In vivo alpha-hemolysin production was reduced in both L and V-treated mice compared to untreated mice but the reduction did not reach the statistical significance [P = 0.12 for L; P = 0.70 for V). PVL was significantly reduced in L-treated mice compared to untreated mice (P = 0.02). However the reduction of in vivo PVL did not reach the statistical significance in V- treated mice compared to untreated mice (P = 0.27). Both antibiotics significantly reduced IL-1β production [P = 0.001 for L; P = 0.006 for V]. IL-6 was significantly reduced with L but not V antibiotic treatment [P<0.001 for L; P = 0.11 for V]. Neither treatment significantly reduced production of TNF-α. Whole-blood gene expression profiling showed no significant effect of L and V on uninfected mice. In S. aureus-infected mice, L altered the expression of a greater number of genes than V (95 vs. 42; P = 0.001). Pathway analysis for the differentially expressed genes identified toll-like receptor signaling pathway to be common to each S. aureus-infected comparison. Expression of immunomodulatory genes like Cxcl9, Cxcl10, Il1r2, Cd14 and Nfkbia was different among the treatment groups. Glycerolipid metabolism pathway was uniquely associated with L treatment in S. aureus infection. This study demonstrates that, as compared to V, treatment with L is associated with reduced levels of toxin production, differences in host inflammatory response, and distinct host gene expression characteristics in MRSA sepsis.
doi:10.1371/journal.pone.0060463
PMCID: PMC3614971  PMID: 23565251
5.  Panton-Valentine Leukocidin Is Not the Primary Determinant of Outcome for Staphylococcus aureus Skin Infections: Evaluation from the CANVAS Studies 
PLoS ONE  2012;7(5):e37212.
The impact of Panton-Valentine leukocidin (PVL) on the severity of complicated skin and skin structure infections (cSSSI) caused by Staphylococcus aureus is controversial. We evaluated potential associations between clinical outcome and PVL presence in both methicillin-resistant S. aureus (MRSA) and methicillin-susceptible S. aureus (MSSA) isolates from patients enrolled in two large, multinational phase three clinical trials assessing ceftaroline fosamil for the treatment of cSSSI (the CANVAS 1 and 2 programs). Isolates from all microbiologically evaluable patients with monomicrobial MRSA or MSSA infections (n = 473) were genotyped by PCR for pvl and underwent pulsed-field gel electrophoresis (PFGE). Genes encoding pvl were present in 266/473 (56.2%) isolates. Infections caused by pvl-positive S. aureus were associated with younger patient age, North American acquisition, and presence of major abscesses (P<0.001 for each). Cure rates of patients infected with pvl-positive and pvl-negative S. aureus were similar overall (93.6% versus 92.8%; P = 0.72), and within MRSA-infected (94.5% vs. 93.1%; P = 0.67) and MSSA-infected patients (92.2% vs. 92.7%; P = 1.00). This finding persisted after adjustment for multiple patient characteristics. Outcomes were also similar when USA300 PVL+ and non-USA300 PVL+ infections were compared. The results of this contemporary, international study suggest that pvl presence was not the primary determinant of outcome in patients with cSSSI due to either MRSA or MSSA.
doi:10.1371/journal.pone.0037212
PMCID: PMC3356380  PMID: 22623995
6.  Two Genes on A/J Chromosome 18 Are Associated with Susceptibility to Staphylococcus aureus Infection by Combined Microarray and QTL Analyses 
PLoS Pathogens  2010;6(9):e1001088.
Although it has recently been shown that A/J mice are highly susceptible to Staphylococcus aureus sepsis as compared to C57BL/6J, the specific genes responsible for this differential phenotype are unknown. Using chromosome substitution strains (CSS), we found that loci on chromosomes 8, 11, and 18 influence susceptibility to S. aureus sepsis in A/J mice. We then used two candidate gene selection strategies to identify genes on these three chromosomes associated with S. aureus susceptibility, and targeted genes identified by both gene selection strategies. First, we used whole genome transcription profiling to identify 191 (56 on chr. 8, 100 on chr. 11, and 35 on chr. 18) genes on our three chromosomes of interest that are differentially expressed between S. aureus-infected A/J and C57BL/6J. Second, we identified two significant quantitative trait loci (QTL) for survival post-infection on chr. 18 using N2 backcross mice (F1 [C18A]×C57BL/6J). Ten genes on chr. 18 (March3, Cep120, Chmp1b, Dcp2, Dtwd2, Isoc1, Lman1, Spire1, Tnfaip8, and Seh1l) mapped to the two significant QTL regions and were also identified by the expression array selection strategy. Using real-time PCR, 6 of these 10 genes (Chmp1b, Dtwd2, Isoc1, Lman1, Tnfaip8, and Seh1l) showed significantly different expression levels between S. aureus-infected A/J and C57BL/6J. For two (Tnfaip8 and Seh1l) of these 6 genes, siRNA-mediated knockdown of gene expression in S. aureus–challenged RAW264.7 macrophages induced significant changes in the cytokine response (IL-1 β and GM-CSF) compared to negative controls. These cytokine response changes were consistent with those seen in S. aureus-challenged peritoneal macrophages from CSS 18 mice (which contain A/J chromosome 18 but are otherwise C57BL/6J), but not C57BL/6J mice. These findings suggest that two genes, Tnfaip8 and Seh1l, may contribute to susceptibility to S. aureus in A/J mice, and represent promising candidates for human genetic susceptibility studies.
Author Summary
Staphylococcus aureus has a wide spectrum of human infection, ranging from asymptomatic nasal carriage to overwhelming sepsis and death. Mouse models offer an attractive strategy for investigating complex diseases such as S. aureus infections. A/J mice are highly susceptible to S. aureus infection compared with C57BL/6J mice. We showed that genes on chromosomes 8, 11, and 18 in A/J are responsible for susceptibility to S. aureus by using chromosome substitution strains (CSS). From the ∼4200 genes on these three chromosomes, we identified 191 which were differentially expressed between A/J and C57BL/6J when challenged with S. aureus. Next, we identified two significant QTLs on chromosome 18 that are associated with susceptibility to S. aureus infection in N2 backcross mice. Ten genes (March3, Cep120, Chmp1b, Dcp2, Dtwd2, Isoc1, Lman1, Spire1, Tnfaip8, and Seh1l) mapped to the two significant QTLs and were differentially expressed between A/J and C57BL/6J. One gene on each QTL, Tnfaip8 and Seh1l, affected expression of cytokines in mouse macrophages exposed to S. aureus. These cytokine response patterns were consistent with those seen in S. aureus-challenged peritoneal macrophages from CSS 18, but not C57BL/6J. Tnfaip8 and Seh1l are strong candidates for genes influencing susceptibility to S. aureus of A/J mice.
doi:10.1371/journal.ppat.1001088
PMCID: PMC2932726  PMID: 20824097

Results 1-6 (6)