Search tips
Search criteria

Results 1-3 (3)

Clipboard (0)
Year of Publication
Document Types
1.  X-ray Absorption Near Edge Structure Spectroscopy to Resolve the in Vivo Chemistry of the Redox-Active Indazolium trans-[Tetrachlorobis(1H-indazole)ruthenate(III)] (KP1019) 
Journal of Medicinal Chemistry  2013;56(3):1182-1196.
Indazolium trans-[tetrachlorobis(1H-indazole)ruthenate(III)] (1, KP1019) and its analogue sodium trans-[tetrachlorobis(1H-indazole)ruthenate(III)] (2, KP1339) are promising redox-active anticancer drug candidates that were investigated with X-ray absorption near edge structure spectroscopy. The analysis was based on the concept of the coordination charge and ruthenium model compounds representing possible coordinations and oxidation states in vivo. 1 was investigated in citrate saline buffer (pH 3.5) and in carbonate buffer (pH 7.4) at 37 °C for different time intervals. Interaction studies on 1 with glutathione in saline buffer and apo-transferrin in carbonate buffer were undertaken, and the coordination of 1 and 2 in tumor tissues was studied too. The most likely coordinations and oxidation states of the compound under the above mentioned conditions were assigned. Microprobe X-ray fluorescence of tumor thin sections showed the strong penetration of ruthenium into the tumor tissue, with the highest concentrations near blood vessels and in the edge regions of the tissue samples.
PMCID: PMC3579476  PMID: 23282017
2.  EVI1 Inhibits Apoptosis Induced by Antileukemic Drugs via Upregulation of CDKN1A/p21/WAF in Human Myeloid Cells 
PLoS ONE  2013;8(2):e56308.
Overexpression of ecotropic viral integration site 1 (EVI1) is associated with aggressive disease in acute myeloid leukemia (AML). Despite of its clinical importance, little is known about the mechanism through which EVI1 confers resistance to antileukemic drugs. Here, we show that a human myeloid cell line constitutively overexpressing EVI1 after infection with a retroviral vector (U937_EVI1) was partially resistant to etoposide and daunorubicin as compared to empty vector infected control cells (U937_vec). Similarly, inducible expression of EVI1 in HL-60 cells decreased their sensitivity to daunorubicin. Gene expression microarray analyses of U937_EVI1 and U937_vec cells cultured in the absence or presence of etoposide showed that 77 and 419 genes were regulated by EVI1 and etoposide, respectively. Notably, mRNA levels of 26 of these genes were altered by both stimuli, indicating that EVI1 regulated genes were strongly enriched among etoposide regulated genes and vice versa. One of the genes that were induced by both EVI1 and etoposide was CDKN1A/p21/WAF, which in addition to its function as a cell cycle regulator plays an important role in conferring chemotherapy resistance in various tumor types. Indeed, overexpression of CDKN1A in U937 cells mimicked the phenotype of EVI1 overexpression, similarly conferring partial resistance to antileukemic drugs.
PMCID: PMC3572987  PMID: 23457546
3.  O6-Methylguanine DNA methyltransferase protein expression in tumor cells predicts outcome of temozolomide therapy in glioblastoma patients 
Neuro-Oncology  2009;12(1):28-36.
O6-Methylguanine DNA methyltransferase (MGMT) is implicated as a major predictive factor for treatment response to alkylating agents including temozolomide (TMZ) of glioblastoma multiforme (GBM) patients. However, whether the MGMT status in GBM patients should be detected at the level of promoter methylation or protein expression is still a matter of debate. Here, we compared promoter methylation (by methylation-specific polymerase chain reaction) and protein expression (by Western blot) in tumor cell explants with respect to prediction of TMZ response and survival of GBM patients (n = 71). Methylated MGMT gene promoter sequences were detected in 47 of 71 (66%) cases, whereas 37 of 71 (52%) samples were scored positive for MGMT protein expression. Although overall promoter methylation correlated significantly with protein expression (χ2 test, P < .001), a small subgroup of samples did not follow this association. In the multivariate Cox regression model, a significant interaction between MGMT protein expression, but not promoter methylation, and TMZ therapy was observed (test for interaction, P = .015). In patients treated with TMZ (n = 42), MGMT protein expression predicted a significantly shorter overall survival (OS; hazard ratio [HR] for death 5.53, 95% confidence interval [CI] 1.76–17.37; P = .003), whereas in patients without TMZ therapy (n = 29), no differences in OS were observed (HR for death 1.00, 95% CI 0.45–2.20; P = .99). These data suggest that lack of MGMT protein expression is superior to promoter methylation as a predictive marker for TMZ response in GBM patients.
PMCID: PMC2940563  PMID: 20150365
O6-Methylguanine DNA methyltransferase; glioblastoma multiforme; protein expression; temozolomide

Results 1-3 (3)