PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-3 (3)
 

Clipboard (0)
None
Journals
Authors
more »
Year of Publication
Document Types
author:("Feng, xinghua")
1.  Analysis of Tp53 Codon 72 Polymorphisms, Tp53 Mutations, and HPV Infection in Cutaneous Squamous Cell Carcinomas 
PLoS ONE  2012;7(4):e34422.
Background
Non-melanoma skin cancers are one of the most common human malignancies accounting for 2–3% of tumors in the US and represent a significant health burden. Epidemiology studies have implicated Tp53 mutations triggered by UV exposure, and human papilloma virus (HPV) infection to be significant causes of non-melanoma skin cancer. However, the relationship between Tp53 and cutaneous HPV infection is not well understood in skin cancers. In this study we assessed the association of HPV infection and Tp53 polymorphisms and mutations in lesional specimens with squamous cell carcinomas.
Methods
We studied 55 cases of histologically confirmed cutaneous squamous cell carcinoma and 41 controls for the presence of HPV infection and Tp53 genotype (mutations and polymorphism).
Results
We found an increased number of Tp53 mutations in the squamous cell carcinoma samples compared with perilesional or control samples. There was increased frequency of homozygous Tp53-72R polymorphism in cases with squamous cell carcinomas, while the Tp53-72P allele (Tp53-72R/P and Tp53-72P/P) was more frequent in normal control samples. Carcinoma samples positive for HPV showed a decreased frequency of Tp53 mutations compared to those without HPV infection. In addition, carcinoma samples with a Tp53-72P allele showed an increased incidence of Tp53 mutations in comparison carcinomas samples homozygous for Tp53-72R.
Conclusions
These studies suggest there are two separate pathways (HPV infection and Tp53 mutation) leading to cutaneous squamous cell carcinomas stratified by the Tp53 codon-72 polymorphism. The presence of a Tp53-72P allele is protective against cutaneous squamous cell carcinoma, and carcinoma specimens with Tp53-72P are more likely to have Tp53 mutations. In contrast Tp53-72R is a significant risk factor for cutaneous squamous cell carcinoma and is frequently associated with HPV infection instead of Tp53 mutations. Heterozygosity for Tp53-72R/P is protective against squamous cell carcinomas, possibly reflecting a requirement for both HPV infection and Tp53 mutations.
doi:10.1371/journal.pone.0034422
PMCID: PMC3335843  PMID: 22545084
2.  Expression of Mir-21 and Mir-143 in Cervical Specimens Ranging from Histologically Normal through to Invasive Cervical Cancer 
PLoS ONE  2011;6(12):e28423.
Background
MicroRNA expression is severely disrupted in carcinogenesis, however limited evidence is available validating results from cell-line models in human clinical cancer specimens. MicroRNA-21 (mir-21) and microRNA-143 (mir-143) have previously been identified as significantly deregulated in a range of cancers including cervical cancer. Our goal was to investigate the expression patterns of several well-studied microRNA species in cervical samples and compare the results to cell line samples.
Methodology/Principal Findings
We measured the expression of mir-21 and mir-143 in 142 formalin-fixed, paraffin embedded (FFPE) cervical biopsy tissue blocks, collected from Dantec Oncology Clinic, Dakar, Senegal. MicroRNA expression analysis was performed using Taqman-based real-time PCR assays. Protein immunohistochemical staining was also performed to investigate target protein expression on 72 samples. We found that mir-21 expression increased with worsening clinical diagnosis but that mir-143 was not correlated with histology. These observations were in stark contrast to previous reports involving cervical cancer cell lines in which mir-143 was consistently down-regulated but mir-21 largely unaffected. We also identified, for the first time, that cytoplasmic expression of Programmed Cell Death Protein 4 PDCD4; a known target of mir-21) was significantly lower in women with invasive cervical carcinoma (ICC) in comparison to those with cervical intraepithelial neoplasia (2–3) or carcinoma in situ (CIN2-3/CIS), although there was no significant correlation between mir-21 and PDCD4 expression, despite previous studies identifying PDCD4 transcript as a known mir-21 target.
Conclusions
Whilst microRNA biomarkers have a number of promising features, more studies on expression levels in histologically defined clinical specimens are required to investigate clinical relevance of discovery-based studies. Mir-21 may be of some utility in predictive screening, given that we observed a significant correlation between mir-21 expression level and worsening histological diagnosis of cervical cancer.
doi:10.1371/journal.pone.0028423
PMCID: PMC3237431  PMID: 22194833
3.  Magnetic Resonance Imaging of Bone Marrow Cell-Mediated Interleukin-10 Gene Therapy of Atherosclerosis 
PLoS ONE  2011;6(9):e24529.
Background
A characteristic feature of atherosclerosis is its diffuse involvement of arteries across the entire human body. Bone marrow cells (BMC) can be simultaneously transferred with therapeutic genes and magnetic resonance (MR) contrast agents prior to their transplantation. Via systemic transplantation, these dual-transferred BMCs can circulate through the entire body and thus function as vehicles to carry genes/contrast agents to multiple atherosclerosis. This study was to evaluate the feasibility of using in vivo MR imaging (MRI) to monitor BMC-mediated interleukin-10 (IL-10) gene therapy of atherosclerosis.
Methodology
For in vitro confirmation, donor mouse BMCs were transduced by IL-10/lentivirus, and then labeled with a T2-MR contrast agent (Feridex). For in vivo validation, atherosclerotic apoE−/− mice were intravenously transplanted with IL-10/Feridex-BMCs (Group I, n = 5) and Feridex-BMCs (Group II, n = 5), compared to controls without BMC transplantation (Group III, n = 5). The cell migration to aortic atherosclerotic lesions was monitored in vivo using 3.0T MRI with subsequent histology correlation. To evaluate the therapeutic effect of BMC-mediated IL-10 gene therapy, we statistically compared the normalized wall indexes (NWI) of ascending aortas amongst different mouse groups with various treatments.
Principal Findings
Of in vitro experiments, simultaneous IL-10 transduction and Feridex labeling of BMCs were successfully achieved, with high cell viability and cell labeling efficiency, as well as IL-10 expression efficiency (≥90%). Of in vivo experiments, MRI of animal groups I and II showed signal voids within the aortic walls due to Feridex-created artifacts from the migrated BMCs in the atherosclerotic plaques, which were confirmed by histology. Histological quantification showed that the mean NWI of group I was significantly lower than those of group II and group III (P<0.05).
Conclusion
This study has confirmed the possibility of using MRI to track, in vivo, IL-10/Feridex-BMCs recruited to atherosclerotic lesions, where IL-10 genes function to prevent the progression of atherosclerosis.
doi:10.1371/journal.pone.0024529
PMCID: PMC3168522  PMID: 21915349

Results 1-3 (3)