PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-5 (5)
 

Clipboard (0)
None
Journals
Authors
more »
Year of Publication
author:("Feng, xinghua")
1.  Th2 type inflammation promotes the gradual progression of HPV-infected cervical cells to cervical carcinoma 
Gynecologic oncology  2012;127(2):412-419.
Objectives
To investigate the role of immunological parameters in tumorigenesis of cervical cancer in women infected with high risk human papillomavirus (hr-HPV), and determine whether key findings with human material can be recapitulated in the mouse TC1 carcinoma model which expresses hr-HPV epitopes.
Methods
Epithelial and lymphoid cells in cervical tissues were analyzed by immunohistochemistry and serum IL10 levels were determined by ELISA. Tumor draining lymph nodes were analyzed in the mouse TC1 model by flow cytometry.
Results
The mucosa was infiltrated by CD20+ and CD138+ cells already at cervical intraepithelial neoplasia 1 (CIN1) and infiltration increased in cervical intraepithelial neoplasia 3 (CIN3)/carcinoma in situ (CIS) and invasive cervical cancer (ICC), where it strongly correlated with infiltration by CD32B+ and FoxP3+ lymphocytes. GATA3+ and T-bet+ lymphoid cells were increased in ICC compared to normal, and expression in epithelial cells of the Th2 inflammation-promoting cytokine TSLP and of IDO1 was higher in CIN3/CIS and ICC. As a corollary, serum levels of IL10 were higher in women with CIN3/CIS or ICC than in normals. Finally we demonstrated in the mouse TC1 carcinoma, which expresses hr-HPV epitopes, an increase of cells expressing B cell or plasma cell markers or Fc receptors in tumor-draining than distal lymph nodes or spleen.
Conclusions
hr-HPV initiates a local Th2 inflammation at an early stage, involving antibody forming cells, and fosters an immunosuppressive microenvironment that aids tumor progression.
doi:10.1016/j.ygyno.2012.07.098
PMCID: PMC3472044  PMID: 22828962
2.  Microplate-based platform for combined chromatin and DNA methylation immunoprecipitation assays 
BMC Molecular Biology  2011;12:49.
Background
The processes that compose expression of a given gene are far more complex than previously thought presenting unprecedented conceptual and mechanistic challenges that require development of new tools. Chromatin structure, which is regulated by DNA methylation and histone modification, is at the center of gene regulation. Immunoprecipitations of chromatin (ChIP) and methylated DNA (MeDIP) represent a major achievement in this area that allow researchers to probe chromatin modifications as well as specific protein-DNA interactions in vivo and to estimate the density of proteins at specific sites genome-wide. Although a critical component of chromatin structure, DNA methylation has often been studied independently of other chromatin events and transcription.
Results
To allow simultaneous measurements of DNA methylation with other genomic processes, we developed and validated a simple and easy-to-use high throughput microplate-based platform for analysis of DNA methylation. Compared to the traditional beads-based MeDIP the microplate MeDIP was more sensitive and had lower non-specific binding. We integrated the MeDIP method with a microplate ChIP assay which allows measurements of both DNA methylation and histone marks at the same time, Matrix ChIP-MeDIP platform. We illustrated several applications of this platform to relate DNA methylation, with chromatin and transcription events at selected genes in cultured cells, human cancer and in a model of diabetic kidney disease.
Conclusion
The high throughput capacity of Matrix ChIP-MeDIP to profile tens and potentially hundreds of different genomic events at the same time as DNA methylation represents a powerful platform to explore complex genomic mechanism at selected genes in cultured cells and in whole tissues. In this regard, Matrix ChIP-MeDIP should be useful to complement genome-wide studies where the rich chromatin and transcription database resources provide fruitful foundation to pursue mechanistic, functional and diagnostic information at genes of interest in health and disease.
doi:10.1186/1471-2199-12-49
PMCID: PMC3247195  PMID: 22098709
3.  DNA methylation changes in normal liver tissues and hepatocellular carcinoma with different viral infection 
Hepatocellular carcinoma (HCC) is known to be associated with both HBV and HCV and HVC. While epigenetic changes have been previously reported to be associated with hepatocellular carcinoma (HCC), whether the epigenetic profile of HBC associated HCC differs from that of HCV associated HCC is unclear. We analyzed DNA methylation of ten genes (APC, CCND2, CDKN2A, GSTP1, HOXA9, RARB, RASSF1, RUNX, SFRP1, and TWIST1) using MethyLight assays on 65 archived liver tissue blocks. Three genes (APC, CCND2, and GSTP1) were frequently methylated in normal liver tissues. Five genes (APC, CDKN2A, HOXA9, RASSF1, and RUNX) were significantly more frequently methylated in malignant liver tissues than normal liver tissues. Among HCC cases, HOXA9, RASSF1 and SFRP1 were methylated more frequently in HBV positive HCC cases, while CDKN2A were significantly more frequently methylated in HCV positive HCC cases. Our data support the hypothesis that HCC resulting from different viral etiologies are associated with different epigenetic changes.
doi:10.1016/j.yexmp.2010.01.002
PMCID: PMC2848881  PMID: 20079733
hypermethylation; HBV; HCV; hepatocellular carcinoma
4.  DNA Hypermethylation, Her-2/neu Overexpression and p53 Mutations in Ovarian Carcinoma 
Gynecologic oncology  2008;111(2):320-329.
Objectives
To define patterns of aberrant DNA methylation, p53 mutation and Her-2/neu overexpression in tissues from benign (N=29), malignant (N=100), and border line malignant ovaries (N=10), as compared to normal (N=68) ovarian tissues. Further, to explore the relationship between the presence of genetic and epigenetic abnormalities in ovarian cancers, and assess the association between epigenetic changes and clinical stage of malignancy at presentation and response to therapy.
Methods
The methylation status of 23 genes that were previously reported associated with various epithelial malignancies was assessed in normal and abnormal ovarian tissues by methylation specific PCR. The presence of p53 mutation (N=82 cases) and Her-2/neu overexpression (N=51 cases) were assessed by DNA sequencing and immunohistochemistry, respectively.
Results
Methylation of four genes (MINT31, HIC1, RASSF1, and CABIN1) was significantly associated with ovarian cancer but not other ovarian pathology. Her-2/neu overexpression was associated with aberrant methylation of three genes (MINT31, RASSF1, and CDH13), although aberrant methylation was not associated with p53 mutations. Methylation of RASSF1 and HIC1 was more frequent in early compared to late stage ovarian cancer, while methylation of CABIN1 and RASSF1 was associated with response to chemotherapy.
Conclusion
DNA methylation of tumor suppressor genes is a frequent event in ovarian cancer, and in some cases is associated with Her-2/neu overexpression. Methylation of CABIN1 and RASSF1 may have the utility to predict response to therapy.
doi:10.1016/j.ygyno.2008.07.036
PMCID: PMC2642648  PMID: 18757082
hypermethylation; Her-2/neu overexpression; p53; ovarian cancer

Results 1-5 (5)