PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-2 (2)
 

Clipboard (0)
None
Journals
Authors
more »
Year of Publication
Document Types
author:("Feng, xinghua")
1.  Co-administration of epithelial junction opener JO-1 improves the efficacy and safety of chemotherapeutic drugs 
Purpose
Epithelial junctions between tumor cells inhibit the penetration of anti-cancer drugs into tumors. We previously reported on recombinant adenovirus serotype 3 derived protein (JO-1), which triggers transient opening of intercellular junctions in epithelial tumors through binding to desmoglein 2 (DSG2), and enhances the anti-tumor effects of several therapeutic monoclonal antibodies. The goal of this study was to evaluate whether JO-1 co-therapy can also improve the efficacy of chemotherapeutic drugs.
Experimental Design
The effect of intravenous application of JO-1 in combination with several chemotherapy drugs including paclitaxel/Taxol™, nanoparticle albumin bound paclitaxel/Abraxane™, liposomal doxorubicin/Doxil™ and irinotecan/Camptosar™, was tested in xenograft models for breast, colon, ovarian, gastric and lung cancer. Because JO-1 does not bind to mouse cells, for safety studies with JO-1, we also used human DSG2 (hDSG2) transgenic mice with tumors that overexpressed human DSG2.
Results
JO-1 increased the efficacy of chemotherapeutic drugs, and in several models overcame drug resistance. JO-1 treatment also allowed for the reduction of drug doses required to achieve anti-tumor effects. Importantly, JO-1 co-admininstration protected normal tissues, including bone marrow and intestinal epithelium, against toxic effects that are normally associated with chemotherapeutic agents. Using the hDSG2 transgenic mouse model, we demonstrated that JO-1 predominantly accumulates in tumors. Except for a mild, transient diarrhea, intravenous injection of JO-1 (2mg/kg) had no critical side effects on other tissues or hematological parameters in hDSG2-transgenic mice.
Conclusions
Our preliminary data suggest that JO-1 co-therapy has the potential to improve the therapeutic outcome of cancer chemotherapy.
doi:10.1158/1078-0432.CCR-11-3213
PMCID: PMC3547677  PMID: 22535153
2.  DNA Hypermethylation, Her-2/neu Overexpression and p53 Mutations in Ovarian Carcinoma 
Gynecologic oncology  2008;111(2):320-329.
Objectives
To define patterns of aberrant DNA methylation, p53 mutation and Her-2/neu overexpression in tissues from benign (N=29), malignant (N=100), and border line malignant ovaries (N=10), as compared to normal (N=68) ovarian tissues. Further, to explore the relationship between the presence of genetic and epigenetic abnormalities in ovarian cancers, and assess the association between epigenetic changes and clinical stage of malignancy at presentation and response to therapy.
Methods
The methylation status of 23 genes that were previously reported associated with various epithelial malignancies was assessed in normal and abnormal ovarian tissues by methylation specific PCR. The presence of p53 mutation (N=82 cases) and Her-2/neu overexpression (N=51 cases) were assessed by DNA sequencing and immunohistochemistry, respectively.
Results
Methylation of four genes (MINT31, HIC1, RASSF1, and CABIN1) was significantly associated with ovarian cancer but not other ovarian pathology. Her-2/neu overexpression was associated with aberrant methylation of three genes (MINT31, RASSF1, and CDH13), although aberrant methylation was not associated with p53 mutations. Methylation of RASSF1 and HIC1 was more frequent in early compared to late stage ovarian cancer, while methylation of CABIN1 and RASSF1 was associated with response to chemotherapy.
Conclusion
DNA methylation of tumor suppressor genes is a frequent event in ovarian cancer, and in some cases is associated with Her-2/neu overexpression. Methylation of CABIN1 and RASSF1 may have the utility to predict response to therapy.
doi:10.1016/j.ygyno.2008.07.036
PMCID: PMC2642648  PMID: 18757082
hypermethylation; Her-2/neu overexpression; p53; ovarian cancer

Results 1-2 (2)