PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-2 (2)
 

Clipboard (0)
None
Journals
Authors
more »
Year of Publication
Document Types
1.  Necrosis is increased in lymphoblastoid cell lines from children with autism compared with their non-autistic siblings under conditions of oxidative and nitrosative stress 
Mutagenesis  2013;28(4):475-484.
Autism spectrum disorders are a heterogeneous group of neurodevelopmental conditions characterised by impairments in reciprocal social interaction, communication and stereotyped behaviours. As increased DNA damage events have been observed in a range of other neurological disorders, it was hypothesised that they would be elevated in lymphoblastoid cell lines (LCLs) obtained from children with autism compared with their non-autistic siblings. Six case–sibling pairs of LCLs from children with autistic disorder and their non-autistic siblings were obtained from the Autism Genetic Resource Exchange (AGRE) and cultured in standard RPMI-1640 tissue culture medium. Cells were exposed to medium containing either 0, 25, 50, 100 and 200 µM hydrogen peroxide (an oxidative stressor) or 0, 5, 10, 20 and 40 µM s-nitroprusside (a nitric oxide producer) for 1h. Following exposure, the cells were microscopically scored for DNA damage, cytostasis and cytotoxicity biomarkers as measured using the cytokinesis-block micronucleus cytome assay. Necrosis was significantly increased in cases relative to controls when exposed to oxidative and nitrosative stress (P = 0.001 and 0.01, respectively). Nuclear division index was significantly lower in LCLs from children with autistic disorder than their non-autistic siblings when exposed to hydrogen peroxide (P = 0.016), but there was no difference in apoptosis, micronucleus frequency, nucleoplasmic bridges or nuclear buds. Exposure to s-nitroprusside significantly increased the number of micronuclei in non-autistic siblings compared with cases (P = 0.003); however, other DNA damage biomarkers, apoptosis and nuclear division did not differ significantly between groups. The findings of this study show (i) that LCLs from children with autism are more sensitive to necrosis under conditions of oxidative and nitrosative stress than their non-autistic siblings and (ii) refutes the hypothesis that children with autistic disorder are abnormally susceptible to DNA damage.
doi:10.1093/mutage/get025
PMCID: PMC3681539  PMID: 23766106
2.  Laser scanning cytometry for automation of the micronucleus assay 
Mutagenesis  2011;26(1):153-161.
Laser scanning cytometry (LSC) provides a novel approach for automated scoring of micronuclei (MN) in different types of mammalian cells, serving as a biomarker of genotoxicity and mutagenicity. In this review, we discuss the advances to date in measuring MN in cell lines, buccal cells and erythrocytes, describe the advantages and outline potential challenges of this distinctive approach of analysis of nuclear anomalies. The use of multiple laser wavelengths in LSC and the high dynamic range of fluorescence and absorption detection allow simultaneous measurement of multiple cellular and nuclear features such as cytoplasmic area, nuclear area, DNA content and density of nuclei and MN, protein content and density of cytoplasm as well as other features using molecular probes. This high-content analysis approach allows the cells of interest to be identified (e.g. binucleated cells in cytokinesis-blocked cultures) and MN scored specifically in them. MN assays in cell lines (e.g. the CHO cell MN assay) using LSC are increasingly used in routine toxicology screening. More high-content MN assays and the expansion of MN analysis by LSC to other models (i.e. exfoliated cells, dermal cell models, etc.) hold great promise for robust and exciting developments in MN assay automation as a high-content high-throughput analysis procedure.
doi:10.1093/mutage/geq069
PMCID: PMC3107611  PMID: 21164197

Results 1-2 (2)