PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-3 (3)
 

Clipboard (0)
None
Journals
Authors
more »
Year of Publication
Document Types
1.  The unique cytoplasmic domain of human FcγRIIIA regulates receptor mediated function 
Ligand specificity characterizes receptors for antibody and many other immune receptors, but the common use of the FcR-γ-chain as their signaling subunit challenges the concept that these receptors are functionally distinct. We hypothesized that elements for specificity might be determined by the unique cytoplasmic domain (CY) sequences of the ligand-binding α-chains of γ-chain associated receptors. Among Fcγ receptors (FcRs), a protein kinase C (PKC) phosphorylation consensus motif, [RSSTR], identified within the FcγRIIIa (CD16A) CY by in silico analysis, is specifically phosphorylated by PKCs, unlike other FcRs. Phosphorylated CD16A mediates a more robust calcium flux, tyrosine phosphorylation of Syk and pro-inflammatory cytokine production while non-phosphorylatable CD16A is more effective at activation of the Gab2/PI3K pathway, leading to enhanced degranulation. S100A4, a specific protein binding partner for CD16A-CY newly identified by yeast two-hybrid analysis, inhibits phosphorylation of CD16A-CY by PKC in vitro, and reduction of S100A4 levels in vivo enhances receptor phosphorylation upon cross-linking. Taken together, PKC-mediated phosphorylation of CD16A modulates distinct signaling pathways engaged by the receptor. Calcium activated binding of S100A4 to CD16A, promoted by the initial calcium flux, attenuates the phosphorylation of CY, and acting as a molecular switch, may both serve as a negative feedback on cytokine production pathways during sustained receptor engagement and favor a shift to degranulation, consistent with the importance of granule release following conjugate formation between CD16A+ effector cells and target cells. This switch mechanism points to new therapeutic targets and provides a frame for understanding novel receptor polymorphisms.
doi:10.4049/jimmunol.1200704
PMCID: PMC3478424  PMID: 23024279
2.  Immune opsonins modulate BLyS/BAFF release in a receptor-specific fashion* 
TNF ligand superfamily member 13B (B-lymphocyte stimulator (BLyS), B cell activating factor (BAFF)) promotes primary B cell proliferation and immunoglobulin production. While the soluble form of BLyS/BAFF is thought to be the primary biologically active form, little is known about the regulation of its cleavage and processing. We provide evidence that Fcγ receptor cross-linking triggers a rapid release of soluble, biologically active BLyS/BAFF from myeloid cells. Surprisingly, this function is primarily mediated by FcγRI, but not FcγRIIa as defined by specific mAb, and can be initiated by both IgG and C reactive protein (CRP) as ligands. The generation of a B cell proliferation and survival factor by both innate and adaptive immune opsonins through engagement of an Fcγ receptor, which can also enhance antigen uptake and presentation, provides a unique opportunity to facilitate antibody production. These results provide a mechanism by which Fcγ receptors can elevate circulating BLyS levels and promote autoantibody production in immune complex mediated autoimmune diseases.
PMCID: PMC3684394  PMID: 18606652
Fc Receptors; Monocytes/Macrophages; Human; Autoimmunity
3.  Expression Profile of FcγRIIb on Leukocytes and Its Dysregulation in Systemic Lupus Erythematosus1 
FcγRIIb (CD32B, Online Mendelian Inheritance in Man 604590), an IgG FcR with a tyrosine-based inhibitory motif, plays a critical role in the balance of tolerance and autoimmunity in murine models. However, the high degree of homology between FcγRIIb and FcγRIIa in humans and the lack of specific Abs to differentiate them have hampered study of the normal expression profile of FcγRIIb and its potential dysregulation in autoimmune diseases such as systemic lupus erythematosus (SLE). Using our newly developed anti-FcγRIIb mAb 4F5 which does not react with FcγRIIa, we found that FcγRIIb is expressed on the cell surface of circulating B lymphocytes, monocytes, neutrophils, myeloid dendritic cells (DCs), and at very low levels on plasmacytoid DCs from some donors. Normal donors with the less frequent 2B.4 promoter haplotype have higher FcγRIIb expression on monocytes, neutrophils, and myeloid DCs similar to that reported for B lymphocytes, indicating that FcγRIIb expression on both myeloid and lymphoid cells is regulated by the naturally occurring regulatory single nucleotide polymorphisms in the FCGR2B promoter. FcγRIIb expression in normal controls is up-regulated on memory B lymphocytes compared with naive B lymphocytes. In contrast, in active SLE, FcγRIIb is significantly down-regulated on both memory and plasma B lymphocytes compared with naive and memory/plasma B lymphocytes from normals. Similar down-regulation of FcγRIIb on myeloid-lineage cells in SLE was not seen. Our studies demonstrate the constitutive regulation of FcγRIIb by natural gene polymorphisms and the acquired dysregulation in SLE autoimmunity, which may identify opportunities for using this receptor as a therapeutic target.
PMCID: PMC2824439  PMID: 17312177

Results 1-3 (3)