PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-5 (5)
 

Clipboard (0)
None
Journals
Year of Publication
Document Types
1.  A functional haplotype of UBE2L3 confers risk for Systemic Lupus Erythematosus 
Genes and immunity  2012;13(5):380-387.
Systemic lupus erythematosus (SLE) is an autoimmune disease with diverse clinical manifestations characterized by the development of pathogenic autoantibodies manifesting in inflammation of target organs such as the kidneys, skin and joints. Genome-wide association studies have identified genetic variants in the UBE2L3 region that are associated with SLE in subjects of European and Asian ancestry. UBE2L3 encodes an ubiquitin-conjugating enzyme, UBCH7, involved in cell proliferation and immune function. In this study, we sought to further characterize the genetic association in the region of UBE2L3 and use molecular methods to determine the functional effect of the risk haplotype. We identified significant associations between variants in the region of UBE2L3 and SLE in individuals of European and Asian ancestry that exceeded a Bonferroni corrected threshold (P < 1 × 10−4). A single risk haplotype was observed in all associated populations. Individuals harboring the risk haplotype display a significant increase in both UBE2L3 mRNA expression (P = 0.0004) and UBCH7 protein expression (P = 0.0068). The results suggest that variants carried on the SLE associated UBE2L3 risk haplotype influence autoimmunity by modulating UBCH7 expression.
doi:10.1038/gene.2012.6
PMCID: PMC3411915  PMID: 22476155
Systemic Lupus Erythematosus; UBE2L3; Multi Ethnic Association Study; UBCH7 Expression
2.  The Role of HLA DR-DQ Haplotypes in Variable Antibody Responses to Anthrax Vaccine Adsorbed 
Genes and immunity  2011;12(6):457-465.
Host genetic variation, particularly within the human leukocyte antigen (HLA) loci, reportedly mediates heterogeneity in immune response to certain vaccines; however, no large study of genetic determinants of anthrax vaccine response has been described. We searched for associations between the IgG antibody to protective antigen (AbPA) response to Anthrax Vaccine Adsorbed (AVA) in humans and polymorphisms at HLA class I (HLA-A, -B, and -C) and class II (HLA-DRB1, -DQA1, -DQB1, -DPB1) loci. The study included 794 European-Americans and 200 African-Americans participating in a 43-month, double-blind, placebo-controlled, clinical trial of AVA (clinicaltrials.gov identifier NCT00119067). Among European-Americans, genes from tightly linked HLA-DRB1-DQA1-DQB1 haplotypes displayed significant overall associations with longitudinal variation in AbPA levels at 4, 8, 26, and 30 weeks from baseline in response to vaccination with 3 or 4 doses of AVA (global p=6.53×10−4). In particular, carriage of the DRB1-DQA1-DQB1 haplotypes *1501-*0102-*0602 (p=1.17×10−5), *0101-*0101-*0501 (p=0.009), and *0102-*0101-*0501 (p=0.006) was associated with significantlylower AbPA levels. In carriers of two copies of these haplotypes, lower AbPA levels persisted following subsequent vaccinations. No significant associations were observed amongst African-Americans or for any HLA class I allele/haplotype. Further studies will be required to replicate these findings and to explore the role of host genetic variation outside of the HLA region.
doi:10.1038/gene.2011.15
PMCID: PMC3165112  PMID: 21368772
Anthrax vaccines; Bacillus anthracis; Bacterial vaccines; Vaccination; HLA Antigens
3.  Evaluation of the TREX1 gene in a large multi-ancestral lupus cohort 
Genes and immunity  2011;12(4):270-279.
Systemic Lupus Erythematosus (SLE) is a prototypic autoimmune disorder with a complex pathogenesis in which genetic, hormonal and environmental factors play a role. Rare mutations in the TREX1 gene, the major mammalian 3′-5′ exonuclease, have been reported in sporadic SLE cases. Some of these mutations have also been identified in a rare pediatric neurologic condition featuring an inflammatory encephalopathy known as Aicardi-Goutières syndrome (AGS). We sought to investigate the frequency of these mutations in a large multi-ancestral cohort of SLE cases and controls.
Methods
Forty single-nucleotide polymorphisms (SNPs), including both common and rare variants, across the TREX1 gene were evaluated in ∼8370 patients with SLE and ∼7490 control subjects. Stringent quality control procedures were applied and principal components and admixture proportions were calculated to identify outliers for removal from analysis. Population-based case-control association analyses were performed. P values, false discovery rate q values, and odds ratios with 95% confidence intervals were calculated.
Results
The estimated frequency of TREX1 mutations in our lupus cohort was 0.5%. Five heterozygous mutations were detected at the Y305C polymorphism in European lupus cases but none were observed in European controls. Five African cases incurred heterozygous mutations at the E266G polymorphism and, again, none were observed in the African controls. A rare homozygous R114H mutation was identified in one Asian SLE patient whereas all genotypes at this mutation in previous reports for SLE were heterozygous. Analysis of common TREX1 SNPs (MAF >10%) revealed a relatively common risk haplotype in European SLE patients with neurologic manifestations, especially seizures, with a frequency of 58% in lupus cases compared to 45% in normal controls (p=0.0008, OR=1.73, 95% CI=1.25-2.39). Finally, the presence or absence of specific autoantibodies in certain populations produced significant genetic associations. For example, a strong association with anti-nRNP was observed in the European cohort at a coding synonymous variant rs56203834 (p=2.99E-13, OR=5.2, 95% CI=3.18-8.56).
Conclusion
Our data confirm and expand previous reports and provide additional support for the involvement of TREX1 in lupus pathogenesis.
doi:10.1038/gene.2010.73
PMCID: PMC3107387  PMID: 21270825
4.  Fcγ Receptors: Structure, Function and Role as Genetic Risk Factors in SLE 
Genes and immunity  2009;10(5):380-389.
Over 30 years ago, receptors for the Fc region of IgG (FcγR) were implicated in the pathogenesis of SLE. Since those pioneering studies, our knowledge of the structure and function of these FcγRs has increased dramatically. We now know that FcγR contribute to regulation of acquired immunity and to regulation of innate immune responses where FcγRs act as specific receptors for innate opsonins (CRP and SAP). Our understanding of the genomic architecture of the genes encoding the FcγR has also witnessed remarkable advances. Numerous functionally relevant SNP variants and copy number (CN) variants have been characterized in the FcγR genes. Many of these variants have also been shown to associate with risk to development of SLE and some have been associated with disease progression. This review will provide an overview of the FcγR in relation to SLE including consideration of the role of genetic variants in FcγR in SLE pathogenesis. The difficulties in assessing genetic variation in these genes will be discussed. To enhance our understanding of the functional roles of these receptors in SLE, future research will need to integrate our knowledge of SNP variants, CN variants and the functional diversity of these receptors.
doi:10.1038/gene.2009.35
PMCID: PMC2830794  PMID: 19421223
5.  Complement receptor 2 polymorphisms associated with systemic lupus erythematosus modulate alternative splicing 
Genes and immunity  2009;10(5):457-469.
Genetic factors influence susceptibility to systemic lupus erythematosus (SLE). A recent family-based analysis in Caucasian and Chinese populations provided evidence for association of single-nucleotide polymorphisms (SNPs) in the complement receptor 2 (CR2/CD21) gene with SLE. Here we confirmed this result in a case-control analysis of an independent European-derived population including 2084 patients with SLE and 2853 healthy controls. A haplotype formed by the minor alleles of three CR2 SNPs (rs1048971, rs17615, rs4308977) showed significant association with decreased risk of SLE (30.4% in cases vs. 32.6% in controls, P = 0.016, OR = 0.90 [0.82-0.98]). Two of these SNPs are in exon 10, directly 5′ of an alternatively spliced exon preferentially expressed in follicular dendritic cells (FDC), and the third is in the alternatively spliced exon. Effects of these SNPs as well as a fourth SNP in exon 11 (rs17616) on alternative splicing were evaluated. We found that the minor alleles of these SNPs decreased splicing efficiency of exon 11 both in vitro and ex vivo. These findings further implicate CR2 in the pathogenesis of SLE and suggest that CR2 variants alter the maintenance of tolerance and autoantibody production in the secondary lymphoid tissues where B cells and FDCs interact.
doi:10.1038/gene.2009.27
PMCID: PMC2714407  PMID: 19387458
Alternative splicing; systemic lupus erythematosus; complement receptors; single-nucleotide polymorphisms; B cells; follicular dendritic cells

Results 1-5 (5)