Search tips
Search criteria

Results 1-2 (2)

Clipboard (0)
more »
Year of Publication
Document Types
1.  Bioinformatics tools and database resources for systems genetics analysis in mice—a short review and an evaluation of future needs 
Briefings in Bioinformatics  2011;13(2):135-142.
During a meeting of the SYSGENET working group ‘Bioinformatics’, currently available software tools and databases for systems genetics in mice were reviewed and the needs for future developments discussed. The group evaluated interoperability and performed initial feasibility studies. To aid future compatibility of software and exchange of already developed software modules, a strong recommendation was made by the group to integrate HAPPY and R/qtl analysis toolboxes, GeneNetwork and XGAP database platforms, and TIQS and xQTL processing platforms. R should be used as the principal computer language for QTL data analysis in all platforms and a ‘cloud’ should be used for software dissemination to the community. Furthermore, the working group recommended that all data models and software source code should be made visible in public repositories to allow a coordinated effort on the use of common data structures and file formats.
PMCID: PMC3294237  PMID: 22396485
QTL mapping; database; mouse; systems genetics
2.  The effect of genome-wide association scan quality control on imputation outcome for common variants 
Imputation is an extremely valuable tool in conducting and synthesising genome-wide association studies (GWASs). Directly typed SNP quality control (QC) is thought to affect imputation quality. It is, therefore, common practise to use quality-controlled (QCed) data as an input for imputing genotypes. This study aims to determine the effect of commonly applied QC steps on imputation outcomes. We performed several iterations of imputing SNPs across chromosome 22 in a dataset consisting of 3177 samples with Illumina 610k (Illumina, San Diego, CA, USA) GWAS data, applying different QC steps each time. The imputed genotypes were compared with the directly typed genotypes. In addition, we investigated the correlation between alternatively QCed data. We also applied a series of post-imputation QC steps balancing elimination of poorly imputed SNPs and information loss. We found that the difference between the unQCed data and the fully QCed data on imputation outcome was minimal. Our study shows that imputation of common variants is generally very accurate and robust to GWAS QC, which is not a major factor affecting imputation outcome. A minority of common-frequency SNPs with particular properties cannot be accurately imputed regardless of QC stringency. These findings may not generalise to the imputation of low frequency and rare variants.
PMCID: PMC3083623  PMID: 21267008
genome-wide association study; imputation; quality control; single nucleotide polymorphism

Results 1-2 (2)