PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-4 (4)
 

Clipboard (0)
None
Journals
Year of Publication
Document Types
1.  Bioinformatics tools and database resources for systems genetics analysis in mice—a short review and an evaluation of future needs 
Briefings in Bioinformatics  2011;13(2):135-142.
During a meeting of the SYSGENET working group ‘Bioinformatics’, currently available software tools and databases for systems genetics in mice were reviewed and the needs for future developments discussed. The group evaluated interoperability and performed initial feasibility studies. To aid future compatibility of software and exchange of already developed software modules, a strong recommendation was made by the group to integrate HAPPY and R/qtl analysis toolboxes, GeneNetwork and XGAP database platforms, and TIQS and xQTL processing platforms. R should be used as the principal computer language for QTL data analysis in all platforms and a ‘cloud’ should be used for software dissemination to the community. Furthermore, the working group recommended that all data models and software source code should be made visible in public repositories to allow a coordinated effort on the use of common data structures and file formats.
doi:10.1093/bib/bbr026
PMCID: PMC3294237  PMID: 22396485
QTL mapping; database; mouse; systems genetics
2.  The effect of genome-wide association scan quality control on imputation outcome for common variants 
Imputation is an extremely valuable tool in conducting and synthesising genome-wide association studies (GWASs). Directly typed SNP quality control (QC) is thought to affect imputation quality. It is, therefore, common practise to use quality-controlled (QCed) data as an input for imputing genotypes. This study aims to determine the effect of commonly applied QC steps on imputation outcomes. We performed several iterations of imputing SNPs across chromosome 22 in a dataset consisting of 3177 samples with Illumina 610k (Illumina, San Diego, CA, USA) GWAS data, applying different QC steps each time. The imputed genotypes were compared with the directly typed genotypes. In addition, we investigated the correlation between alternatively QCed data. We also applied a series of post-imputation QC steps balancing elimination of poorly imputed SNPs and information loss. We found that the difference between the unQCed data and the fully QCed data on imputation outcome was minimal. Our study shows that imputation of common variants is generally very accurate and robust to GWAS QC, which is not a major factor affecting imputation outcome. A minority of common-frequency SNPs with particular properties cannot be accurately imputed regardless of QC stringency. These findings may not generalise to the imputation of low frequency and rare variants.
doi:10.1038/ejhg.2010.242
PMCID: PMC3083623  PMID: 21267008
genome-wide association study; imputation; quality control; single nucleotide polymorphism
3.  A Multiparent Advanced Generation Inter-Cross to Fine-Map Quantitative Traits in Arabidopsis thaliana 
PLoS Genetics  2009;5(7):e1000551.
Identifying natural allelic variation that underlies quantitative trait variation remains a fundamental problem in genetics. Most studies have employed either simple synthetic populations with restricted allelic variation or performed association mapping on a sample of naturally occurring haplotypes. Both of these approaches have some limitations, therefore alternative resources for the genetic dissection of complex traits continue to be sought. Here we describe one such alternative, the Multiparent Advanced Generation Inter-Cross (MAGIC). This approach is expected to improve the precision with which QTL can be mapped, improving the outlook for QTL cloning. Here, we present the first panel of MAGIC lines developed: a set of 527 recombinant inbred lines (RILs) descended from a heterogeneous stock of 19 intermated accessions of the plant Arabidopsis thaliana. These lines and the 19 founders were genotyped with 1,260 single nucleotide polymorphisms and phenotyped for development-related traits. Analytical methods were developed to fine-map quantitative trait loci (QTL) in the MAGIC lines by reconstructing the genome of each line as a mosaic of the founders. We show by simulation that QTL explaining 10% of the phenotypic variance will be detected in most situations with an average mapping error of about 300 kb, and that if the number of lines were doubled the mapping error would be under 200 kb. We also show how the power to detect a QTL and the mapping accuracy vary, depending on QTL location. We demonstrate the utility of this new mapping population by mapping several known QTL with high precision and by finding novel QTL for germination data and bolting time. Our results provide strong support for similar ongoing efforts to produce MAGIC lines in other organisms.
Author Summary
Most traits of economic and evolutionary interest vary quantitatively and have multiple genes affecting their expression. Dissecting the genetic basis of such traits is crucial for the improvement of crops and management of diseases. Here, we develop a new resource to identify genes underlying such quantitative traits in Arabidopsis thaliana, a genetic model organism in plants. We show that using a large population of inbred lines derived from intercrossing 19 parents, we can localize the genes underlying quantitative traits better than with existing methods. Using these lines, we were able to replicate the identification of previously known genes that affect developmental traits in A. thaliana and identify some new ones. This paper also presents all the necessary biological and computational material necessary for the scientific community to use these lines in their own research. Our results suggest that the use of lines derived from a multiparent advanced generation inter-cross (MAGIC lines) should be very useful in other organisms.
doi:10.1371/journal.pgen.1000551
PMCID: PMC2700969  PMID: 19593375
4.  Linkage disequilibrium mapping via cladistic analysis of phase-unknown genotypes and inferred haplotypes in the Genetic Analysis Workshop 14 simulated data 
BMC Genetics  2005;6(Suppl 1):S100.
We recently described a method for linkage disequilibrium (LD) mapping, using cladistic analysis of phased single-nucleotide polymorphism (SNP) haplotypes in a logistic regression framework. However, haplotypes are often not available and cannot be deduced with certainty from the unphased genotypes. One possible two-stage approach is to infer the phase of multilocus genotype data and analyze the resulting haplotypes as if known. Here, haplotypes are inferred using the expectation-maximization (EM) algorithm and the best-guess phase assignment for each individual analyzed. However, inferring haplotypes from phase-unknown data is prone to error and this should be taken into account in the subsequent analysis. An alternative approach is to analyze the phase-unknown multilocus genotypes themselves. Here we present a generalization of the method for phase-known haplotype data to the case of unphased SNP genotypes. Our approach is designed for high-density SNP data, so we opted to analyze the simulated dataset. The marker spacing in the initial screen was too large for our method to be effective, so we used the answers provided to request further data in regions around the disease loci and in null regions. Power to detect the disease loci, accuracy in localizing the true site of the locus, and false-positive error rates are reported for the inferred-haplotype and unphased genotype methods. For this data, analyzing inferred haplotypes outperforms analysis of genotypes. As expected, our results suggest that when there is little or no LD between a disease locus and the flanking region, there will be no chance of detecting it unless the disease variant itself is genotyped.
doi:10.1186/1471-2156-6-S1-S100
PMCID: PMC1866839  PMID: 16451556

Results 1-4 (4)