Search tips
Search criteria

Results 1-4 (4)

Clipboard (0)
more »
Year of Publication
Document Types
1.  Susceptibility to klebsiella pneumonaie infection in collaborative cross mice is a complex trait controlled by at least three loci acting at different time points 
BMC Genomics  2014;15(1):865.
Klebsiella pneumoniae (Kp) is a bacterium causing severe pneumonia in immunocompromised hosts and is often associated with sepsis. With the rise of antibiotic resistant bacteria, there is a need for new effective and affordable control methods; understanding the genetic architecture of susceptibility to Kp will help in their development. We performed the first quantitative trait locus (QTL) mapping study of host susceptibility to Kp infection in immunocompetent Collaborative Cross mice (CC). We challenged 328 mice from 73 CC lines intraperitoneally with 104 colony forming units of Kp strain K2. Survival and body weight were monitored for 15 days post challenge. 48 of the CC lines were genotyped with 170,000 SNPs, with which we mapped QTLs.
CC lines differed significantly (P < 0.05) in mean survival time, between 1 to 15 days post infection, and broad sense heritability was 0.45. Distinct QTL were mapped at specific time points during the challenge. A QTL on chromosome 4 was found only on day 2 post infection, and QTL on chromosomes 8 and 18, only on day 8. By using the sequence variations of the eight inbred strain founders of the CC to refine QTL localization we identify several candidate genes.
Host susceptibility to Kp is a complex trait, controlled by multiple genetic factors that act sequentially during the course of infection.
Electronic supplementary material
The online version of this article (doi:10.1186/1471-2164-15-865) contains supplementary material, which is available to authorized users.
PMCID: PMC4201739  PMID: 25283706
Klebsiella pneumoniae; Mouse model; Collaborative cross mice; Host susceptibility; QTL mapping; Candidate genes
2.  Bioinformatics tools and database resources for systems genetics analysis in mice—a short review and an evaluation of future needs 
Briefings in Bioinformatics  2011;13(2):135-142.
During a meeting of the SYSGENET working group ‘Bioinformatics’, currently available software tools and databases for systems genetics in mice were reviewed and the needs for future developments discussed. The group evaluated interoperability and performed initial feasibility studies. To aid future compatibility of software and exchange of already developed software modules, a strong recommendation was made by the group to integrate HAPPY and R/qtl analysis toolboxes, GeneNetwork and XGAP database platforms, and TIQS and xQTL processing platforms. R should be used as the principal computer language for QTL data analysis in all platforms and a ‘cloud’ should be used for software dissemination to the community. Furthermore, the working group recommended that all data models and software source code should be made visible in public repositories to allow a coordinated effort on the use of common data structures and file formats.
PMCID: PMC3294237  PMID: 22396485
QTL mapping; database; mouse; systems genetics
3.  A Multiparent Advanced Generation Inter-Cross to Fine-Map Quantitative Traits in Arabidopsis thaliana 
PLoS Genetics  2009;5(7):e1000551.
Identifying natural allelic variation that underlies quantitative trait variation remains a fundamental problem in genetics. Most studies have employed either simple synthetic populations with restricted allelic variation or performed association mapping on a sample of naturally occurring haplotypes. Both of these approaches have some limitations, therefore alternative resources for the genetic dissection of complex traits continue to be sought. Here we describe one such alternative, the Multiparent Advanced Generation Inter-Cross (MAGIC). This approach is expected to improve the precision with which QTL can be mapped, improving the outlook for QTL cloning. Here, we present the first panel of MAGIC lines developed: a set of 527 recombinant inbred lines (RILs) descended from a heterogeneous stock of 19 intermated accessions of the plant Arabidopsis thaliana. These lines and the 19 founders were genotyped with 1,260 single nucleotide polymorphisms and phenotyped for development-related traits. Analytical methods were developed to fine-map quantitative trait loci (QTL) in the MAGIC lines by reconstructing the genome of each line as a mosaic of the founders. We show by simulation that QTL explaining 10% of the phenotypic variance will be detected in most situations with an average mapping error of about 300 kb, and that if the number of lines were doubled the mapping error would be under 200 kb. We also show how the power to detect a QTL and the mapping accuracy vary, depending on QTL location. We demonstrate the utility of this new mapping population by mapping several known QTL with high precision and by finding novel QTL for germination data and bolting time. Our results provide strong support for similar ongoing efforts to produce MAGIC lines in other organisms.
Author Summary
Most traits of economic and evolutionary interest vary quantitatively and have multiple genes affecting their expression. Dissecting the genetic basis of such traits is crucial for the improvement of crops and management of diseases. Here, we develop a new resource to identify genes underlying such quantitative traits in Arabidopsis thaliana, a genetic model organism in plants. We show that using a large population of inbred lines derived from intercrossing 19 parents, we can localize the genes underlying quantitative traits better than with existing methods. Using these lines, we were able to replicate the identification of previously known genes that affect developmental traits in A. thaliana and identify some new ones. This paper also presents all the necessary biological and computational material necessary for the scientific community to use these lines in their own research. Our results suggest that the use of lines derived from a multiparent advanced generation inter-cross (MAGIC lines) should be very useful in other organisms.
PMCID: PMC2700969  PMID: 19593375
4.  Linkage disequilibrium mapping via cladistic analysis of phase-unknown genotypes and inferred haplotypes in the Genetic Analysis Workshop 14 simulated data 
BMC Genetics  2005;6(Suppl 1):S100.
We recently described a method for linkage disequilibrium (LD) mapping, using cladistic analysis of phased single-nucleotide polymorphism (SNP) haplotypes in a logistic regression framework. However, haplotypes are often not available and cannot be deduced with certainty from the unphased genotypes. One possible two-stage approach is to infer the phase of multilocus genotype data and analyze the resulting haplotypes as if known. Here, haplotypes are inferred using the expectation-maximization (EM) algorithm and the best-guess phase assignment for each individual analyzed. However, inferring haplotypes from phase-unknown data is prone to error and this should be taken into account in the subsequent analysis. An alternative approach is to analyze the phase-unknown multilocus genotypes themselves. Here we present a generalization of the method for phase-known haplotype data to the case of unphased SNP genotypes. Our approach is designed for high-density SNP data, so we opted to analyze the simulated dataset. The marker spacing in the initial screen was too large for our method to be effective, so we used the answers provided to request further data in regions around the disease loci and in null regions. Power to detect the disease loci, accuracy in localizing the true site of the locus, and false-positive error rates are reported for the inferred-haplotype and unphased genotype methods. For this data, analyzing inferred haplotypes outperforms analysis of genotypes. As expected, our results suggest that when there is little or no LD between a disease locus and the flanking region, there will be no chance of detecting it unless the disease variant itself is genotyped.
PMCID: PMC1866839  PMID: 16451556

Results 1-4 (4)