PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-6 (6)
 

Clipboard (0)
None
Journals
Authors
more »
Year of Publication
Document Types
1.  The closterovirus-derived gene expression and RNA interference vectors as tools for research and plant biotechnology 
Important progress in understanding replication, interactions with host plants, and evolution of closteroviruses enabled engineering of several vectors for gene expression and virus-induced gene silencing. Due to the broad host range of closteroviruses, these vectors expanded vector applicability to include important woody plants such as citrus and grapevine. Furthermore, large closterovirus genomes offer genetic capacity and stability unrivaled by other plant viral vectors. These features provided immense opportunities for using closterovirus vectors for the functional genomics studies and pathogen control in economically valuable crops. This review briefly summarizes advances in closterovirus research during the last decade, explores the relationships between virus biology and vector design, and outlines the most promising directions for future application of closterovirus vectors.
doi:10.3389/fmicb.2013.00083
PMCID: PMC3622897  PMID: 23596441
viral vector; closteroviruses; RNAi; Beet yellows virus; Citrus tristeza virus; Grapevine leafroll-associated virus-2
2.  A virocentric perspective on the evolution of life 
Current opinion in virology  2013;3(5):546-557.
Viruses and/or virus-like selfish elements are associated with all cellular life forms and are the most abundant biological entities on Earth, with the number of virus particles in many environments exceeding the number of cells by one to two orders of magnitude. The genetic diversity of viruses is commensurately enormous and might substantially exceed the diversity of cellular organisms. Unlike cellular organisms with their uniform replication-expression scheme, viruses possess either RNA or DNA genomes and exploit all conceivable replication-expression strategies. Although viruses extensively exchange genes with their hosts, there exists a set of viral hallmark genes that are shared by extremely diverse groups of viruses to the exclusion of cellular life forms. Coevolution of viruses and host defense systems is a key aspect in the evolution of both viruses and cells, and viral genes are often recruited for cellular functions. Together with the fundamental inevitability of the emergence of genomic parasites in any evolving replicator system, these multiple lines of evidence reveal the central role of viruses in the entire evolution of life.
doi:10.1016/j.coviro.2013.06.008
PMCID: PMC4326007  PMID: 23850169
3.  Common Origins and Host-Dependent Diversity of Plant and Animal Viromes 
Current opinion in virology  2011;1(5):322-331.
Many viruses infecting animals and plants share common cores of homologous genes involved in the key processes of viral replication. In contrast, genes that mediate virus – host interactions including in many cases capsid protein genes are markedly different. There are three distinct scenarios for the origin of related viruses of plants and animals: i) evolution from a common ancestral virus predating the divergence of plants and animals; ii) horizontal transfer of viruses, for example, through insect vectors; iii) parallel origin from related genetic elements. We present evidence that each of these scenarios contributed, to a varying extent, to the evolution of different groups of viruses.
doi:10.1016/j.coviro.2011.09.007
PMCID: PMC3293486  PMID: 22408703
4.  New dimensions of the virus world discovered through metagenomics 
Trends in Microbiology  2009;18(1):11-19.
Metagenomic analysis of viruses suggests novel patterns of evolution, changes the existing ideas of the composition of the virus world and reveals novel groups of viruses and virus-like agents. The gene composition of the marine DNA virome is dramatically different from that of known bacteriophages. The virome is dominated by rare genes, many of which might be contained within virus-like entities such as gene transfer agents. Analysis of marine metagenomes thought to consist mostly of bacterial genes revealed a variety of sequences homologous to conserved genes of eukaryotic nucleocytoplasmic large DNA viruses, resulting in the discovery of diverse members of previously undersampled groups and suggesting the existence of new classes of virus-like agents. Unexpectedly, metagenomics of marine RNA viruses showed that representatives of only one superfamily of eukaryotic viruses, the picorna-like viruses, dominate the RNA virome.
doi:10.1016/j.tim.2009.11.003
PMCID: PMC3293453  PMID: 19942437
5.  Viral AlkB proteins repair RNA damage by oxidative demethylation 
Nucleic Acids Research  2008;36(17):5451-5461.
Bacterial and mammalian AlkB proteins are iron(II)- and 2-oxoglutarate-dependent dioxygenases that reverse methylation damage, such as 1-methyladenine and 3-methylcytosine, in RNA and DNA. An AlkB-domain is encoded by the genome of numerous single-stranded, plant-infecting RNA viruses, the majority of which belong to the Flexiviridae family. Our phylogenetic analysis of AlkB sequences suggests that a single plant virus might have acquired AlkB relatively recently, followed by horizontal dissemination among other viruses via recombination. Here, we describe the first functional characterization of AlkB proteins from three plant viruses. The viral AlkB proteins efficiently reactivated methylated bacteriophage genomes when expressed in Escherichia coli, and also displayed robust, iron(II)- and 2-oxoglutarate-dependent demethylase activity in vitro. Viral AlkB proteins preferred RNA over DNA substrates, and thus represent the first AlkBs with such substrate specificity. Our results suggest a role for viral AlkBs in maintaining the integrity of the viral RNA genome through repair of deleterious methylation damage, and support the notion that AlkB-mediated RNA repair is biologically relevant.
doi:10.1093/nar/gkn519
PMCID: PMC2553587  PMID: 18718927
6.  The 64-Kilodalton Capsid Protein Homolog of Beet Yellows Virus Is Required for Assembly of Virion Tails 
Journal of Virology  2003;77(4):2377-2384.
The filamentous virion of the closterovirus Beet yellows virus (BYV) consists of a long body formed by the major capsid protein (CP) and a short tail composed of the minor capsid protein (CPm) and the virus-encoded Hsp70 homolog. By using nano-liquid chromatography-tandem mass spectrometry and biochemical analyses, we show here that the BYV 64-kDa protein (p64) is the fourth integral component of BYV virions. The N-terminal domain of p64 is exposed at the virion surface and is accessible to antibodies and mild trypsin digestion. In contrast, the C-terminal domain is embedded in the virion and is inaccessible to antibodies or trypsin. The C-terminal domain of p64 is shown to be homologous to CP and CPm. Mutation of the signature motifs of capsid proteins of filamentous RNA viruses in p64 results in the formation of tailless virions, which are unable to move from cell to cell. These results reveal the dual function of p64 in tail assembly and BYV motility and support the concept of the virion tail as a specialized device for BYV cell-to-cell movement.
doi:10.1128/JVI.77.4.2377-2384.2003
PMCID: PMC141117  PMID: 12551975

Results 1-6 (6)