PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-2 (2)
 

Clipboard (0)
None
Journals
Authors
more »
Year of Publication
Document Types
1.  Light-regulation of protein dimerization and kinase activity in living cells using photocaged rapamycin and engineered FKBP 
We developed a new system for light-induced protein dimerization in living cells using a novel photocaged analog of rapamycin (pRap) together with an engineered rapamycin binding domain (iFKBP). Using focal adhesion kinase as a target, we demonstrated successful light-mediated regulation of protein interaction and localization in living cells. Modification of this approach enabled light-triggered activation of a protein kinase and initiation of kinase-induced phenotypic changes in vivo.
doi:10.1021/ja109630v
PMCID: PMC3133816  PMID: 21162531
2.  Native-like RNA tertiary structures using a sequence-encoded cleavage agent and refinement by discrete molecular dynamics 
The difficulty of analyzing higher order RNA structure, especially for folding intermediates and for RNAs whose functions require domains that are conformationally flexible, emphasizes the need for new approaches for modeling RNA tertiary structure accurately. Here, we report a concise approach that makes use of facile RNA structure probing experiments that are then interpreted using a computational algorithm, carefully tailored to optimize both the resolution and refinement speed for the resulting structures, without requiring user intervention. The RNA secondary structure is first established using SHAPE chemistry. We then use a sequence-directed cleavage agent, that can be placed arbitrarily in many helical motifs, to obtain high quality inter-residue distances. We interpret this in-solution chemical information using a fast, coarse grained, discrete molecular dynamics engine in which each RNA nucleotide is represented by pseudoatoms for the phosphate, ribose and nucleobase groups. By this approach, we refine base paired positions in yeast tRNAAsp to 4 Å RMSD without any preexisting information or assumptions about secondary or tertiary structures. This blended experimental and computational approach has the potential to yield native-like models for the diverse universe of functionally important RNAs whose structures cannot be characterized by conventional structural methods.
doi:10.1021/ja805460e
PMCID: PMC2664099  PMID: 19193004

Results 1-2 (2)