PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-1 (1)
 

Clipboard (0)
None
Journals
Authors
Year of Publication
Document Types
1.  Probing protein aggregation using simplified models and discrete molecular dynamics 
Understanding the role of biomolecular dynamics in cellular processes leading to human diseases and the ability to rationally manipulate these processes is of fundamental importance in scientific research. The last decade has witnessed significant progress in probing biophysical behavior of proteins. However, we are still limited in understanding how changes in protein dynamics and inter-protein interactions occurring in short length- and time-scales lead to aberrations in their biological function. Bridging this gap in biology probed using computer simulations marks a challenging frontier in computational biology. Here we examine hypothesis-driven simplified protein models in conjunction with discrete molecular dynamics in the study of protein aggregation, implicated in series of neurodegenerative diseases, such as Alzheimer's and Huntington's diseases. Discrete molecular dynamics simulations of simplified protein models have emerged as a powerful methodology with its ability to bridge the gap in time and length scales from protein dynamics to aggregation, and provide an indispensable tool for probing protein aggregation.
PMCID: PMC2497428  PMID: 18508545
Protein Aggregation; Protein Misfolding; Simplified Modeling; Aggregation Kinetics; Folding Thermodynamics; Discrete Molecular Dynamics; Molecular Dynamics; Computational Biology; Biophysics; MD; DMD; Misfolding; Molecular Dynamics; Review

Results 1-1 (1)