PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-8 (8)
 

Clipboard (0)
None
Journals
Authors
more »
Year of Publication
Document Types
1.  Structural basis for mu-opioid receptor binding and activation 
Structure (London, England : 1993)  2011;19(11):1683-1690.
Summary
Opioids that stimulate the μ-opioid receptor (MOR1) are the most frequently prescribed and effective analgesics. Here we present a structural model of MOR1. Molecular dynamics simulations show a ligand-dependent increase in the conformational flexibility of the third intracellular loop that couples with the G-protein complex. These simulations likewise identified residues that form frequent contacts with ligands. We validated the binding residues using site-directed mutagenesis coupled with radioligand binding and functional assays. The model was used to blindly screen a library of ~1.2 million compounds. From the thirty-four compounds predicted to be strong binders, the top three candidates were examined using biochemical assays. One compound showed high efficacy and potency. Post hoc testing revealed this compound to be nalmefene, a potent clinically used antagonist, thus further validating the model. In summary, the MOR1 model provides a tool for elucidating the structural mechanism of ligand-initiated cell signaling and screening for novel analgesics.
doi:10.1016/j.str.2011.08.003
PMCID: PMC3217204  PMID: 22078567
2.  Rapid flexible docking using a stochastic rotamer library of ligands 
Existing flexible docking approaches model the ligand and receptor flexibility either separately or in a loosely-coupled manner, which captures the conformational changes inefficiently. Here, we propose a flexible docking approach, MedusaDock, which models both ligand and receptor flexibility simultaneously with sets of discrete rotamers. We develop an algorithm to build the ligand rotamer library “on-the-fly” during docking simulations. MedusaDock benchmarks demonstrate a rapid sampling efficiency and high prediction accuracy in both self-docking (to the co-crystallized state) and cross-docking (to a state co-crystallized with a different ligand), the latter of which mimics the virtual-screening procedure in computational drug discovery. We also perform a virtual-screening test of four flexible kinase targets including cyclin-dependent kinase 2, vascular endothelial growth factor receptor 2, HIV reverse transcriptase, and HIV protease. We find significant improvements of virtual-screening enrichments when compared to rigid-receptor methods. The predictive power of MedusaDock in cross-docking and preliminary virtual-screening benchmarks highlights the importance to model both ligand and receptor flexibility simultaneously in computational docking.
doi:10.1021/ci100218t
PMCID: PMC2947618  PMID: 20712341
3.  Protein Folding: Then and Now 
Over the past three decades the protein folding field has undergone monumental changes. Originally a purely academic question, how a protein folds has now become vital in understanding diseases and our abilities to rationally manipulate cellular life by engineering protein folding pathways. We review and contrast past and recent developments in the protein folding field. Specifically, we discuss the progress in our understanding of protein folding thermodynamics and kinetics, the properties of evasive intermediates, and unfolded states. We also discuss how some abnormalities in protein folding lead to protein aggregation and human diseases.
doi:10.1016/j.abb.2007.05.014
PMCID: PMC2173875  PMID: 17585870
4.  Cheminformatics Meets Molecular Mechanics: A Combined Application of Knowledge-based Pose Scoring and Physical Force Field-based Hit Scoring Functions Improves the Accuracy of Structure-Based Virtual Screening 
Poor performance of scoring functions is a well-known bottleneck in structure-based virtual screening, which is most frequently manifested in the scoring functions’ inability to discriminate between true ligands versus known non-binders (therefore designated as binding decoys). This deficiency leads to a large number of false positive hits resulting from virtual screening. We have hypothesized that filtering out or penalizing docking poses recognized as non-native (i.e., pose decoys) should improve the performance of virtual screening in terms of improved identification of true binders. Using several concepts from the field of cheminformatics, we have developed a novel approach to identifying pose decoys from an ensemble of poses generated by computational docking procedures. We demonstrate that the use of target-specific pose (-scoring) filter in combination with a physical force field-based scoring function (MedusaScore) leads to significant improvement of hit rates in virtual screening studies for 12 of the 13 benchmark sets from the clustered version of the Database of Useful Decoys (DUD). This new hybrid scoring function outperforms several conventional structure-based scoring functions, including XSCORE∷HMSCORE, ChemScore, PLP, and Chemgauss3, in six out of 13 data sets at early stage of VS (up 1% decoys of the screening database). We compare our hybrid method with several novel VS methods that were recently reported to have good performances on the same DUD data sets. We find that the retrieved ligands using our method are chemically more diverse in comparison with two ligand-based methods (FieldScreen and FLAP∷LBX). We also compare our method with FLAP∷RBLB, a high-performance VS method that also utilizes both the receptor and the cognate ligand structures. Interestingly, we find that the top ligands retrieved using our method are highly complementary to those retrieved using FLAP∷RBLB, hinting effective directions for best VS applications. We suggest that this integrative virtual screening approach combining cheminformatics and molecular mechanics methodologies may be applied to a broad variety of protein targets to improve the outcome of structure-based drug discovery studies.
doi:10.1021/ci2002507
PMCID: PMC3264743  PMID: 22017385
5.  Combined application of cheminformatics- and physical force field-based scoring functions improves binding affinity prediction for CSAR datasets 
The curated CSAR-NRC benchmark sets provide valuable opportunity for testing or comparing the performance of both existing and novel scoring functions. We apply two different scoring functions, both independently and in combination, to predict binding affinity of ligands in the CSAR-NRC datasets. One, reported here for the first time, employs multiple chemical-geometrical descriptors of the protein-ligand interface to develop Quantitative Structure – Binding Affinity Relationships (QSBAR) models; these models are then used to predict binding affinity of ligands in the external dataset. Second is a physical force field-based scoring function, MedusaScore. We show that both individual scoring functions achieve statistically significant prediction accuracies with the squared correlation coefficient (R2) between actual and predicted binding affinity of 0.44/0.53 (Set1/Set2) with QSBAR models and 0.34/0.47 (Set1/Set2) with MedusaScore. Importantly, we find that the combination of QSBAR models and MedusaScore into consensus scoring function affords higher prediction accuracy than any of the contributing methods achieving R2 of 0.45/0.58 (Set1/Set2). Furthermore, we identify several chemical features and non-covalent interactions that may be responsible for the inaccurate prediction of binding affinity for several ligands by the scoring functions employed in this study.
doi:10.1021/ci200146e
PMCID: PMC3183266  PMID: 21780807
6.  Fingerprint-Based Structure Retrieval Using Electron Density 
Proteins  2011;79(3):1002-1009.
We present a computational approach that can quickly search a large protein structural database to identify structures that fit a given electron density, such as determined by cryo-electron microscopy. We use geometric invariants (fingerprints) constructed using 3D Zernike moments to describe the electron density, and reduce the problem of fitting of the structure to the electron density to simple fingerprint comparison. Using this approach, we are able to screen the entire Protein Data Bank and identify structures that fit two experimental electron densities determined by cryo-electron microscopy.
doi:10.1002/prot.22941
PMCID: PMC3072439  PMID: 21287628
cryo-EM; density fitting; structural genome; Zernike; geometric invariants
7.  Computational design of a PAK1 binding protein 
Journal of molecular biology  2010;400(2):257-270.
We describe a computational protocol, called DDMI, for redesigning scaffold proteins to bind to a specified region on a target protein. The DDMI protocol is implemented within the Rosetta molecular modeling program and uses rigid-body docking, sequence design, and gradient-based minimization of backbone and side chain torsion angles to design low energy interfaces between the scaffold and target protein. Iterative rounds of sequence design and conformational optimization were needed to produce models that have calculated binding energies that are similar to binding energies calculated for native complexes. We also show that additional conformation sampling with molecular dynamics can be iterated with sequence design to further lower the computed energy of the designed complexes. To experimentally test the DDMI protocol we redesigned the human hyperplastic discs protein to bind to the kinase domain of p21-activated kinase 1 (PAK1). Six designs were experimentally characterized. Two of the designs aggregated and were not characterized further. Of the remaining four designs, three bound to the PAK1 with affinities tighter than 350 μM. The tightest binding design, named Spider Roll, bound with an affinity of 100 μM. NMR –based structure prediction of Spider Roll based on backbone and 13Cβ chemical shifts using the program CS-ROSETTA indicated that the architecture of human hyperplastic discs protein is preserved. Mutagenesis studies confirmed that Spider Roll binds the target patch on PAK1. Additionally, Spider Roll binds to full length PAK1 in its activated state, but does not bind PAK1 when it forms an auto-inhibited conformation that blocks the Spider Roll target site. Subsequent NMR characterization of the binding of Spider Roll to PAK1 revealed a comparably small binding `on-rate' constant (<< 105 M−1 s−1). The ability to rationally design the site of novel protein-protein interactions is an important step towards creating new proteins that are useful as therapeutics or molecular probes.
doi:10.1016/j.jmb.2010.05.006
PMCID: PMC2903434  PMID: 20460129
Computational protein design; protein-protein interactions; protein docking; Rosetta molecular modeling program; NMR; CS-ROSETTA
8.  MedusaScore: An Accurate Force-Field Based Scoring Function for Virtual Drug Screening 
Virtual screening is becoming an important tool for drug discovery. However, the application of virtual screening has been limited by the lack of accurate scoring functions. Here, we present a novel scoring function, MedusaScore, for evaluating protein-ligand binding. MedusaScore is based on models of physical interactions that include van der Waals, solvation and hydrogen bonding energies. To ensure the best transferability of the scoring function, we do not use any protein-ligand experimental data for parameter training. We then test the MedusaScore for docking decoy recognition and binding affinity prediction and find superior performance compared to other widely used scoring functions. Statistical analysis indicates that one source of inaccuracy of MedusaScore may arise from the unaccounted entropic loss upon ligand binding, which suggests avenues of approach for further MedusaScore improvement.
doi:10.1021/ci8001167
PMCID: PMC2665000  PMID: 18672869

Results 1-8 (8)