PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-3 (3)
 

Clipboard (0)
None
Journals
Authors
Year of Publication
Document Types
1.  Discrete Molecular Dynamics Can Predict Helical Prestructured Motifs in Disordered Proteins 
PLoS ONE  2014;9(4):e95795.
Intrinsically disordered proteins (IDPs) lack a stable tertiary structure, but their short binding regions termed Pre-Structured Motifs (PreSMo) can form transient secondary structure elements in solution. Although disordered proteins are crucial in many biological processes and designing strategies to modulate their function is highly important, both experimental and computational tools to describe their conformational ensembles and the initial steps of folding are sparse. Here we report that discrete molecular dynamics (DMD) simulations combined with replica exchange (RX) method efficiently samples the conformational space and detects regions populating α-helical conformational states in disordered protein regions. While the available computational methods predict secondary structural propensities in IDPs based on the observation of protein-protein interactions, our ab initio method rests on physical principles of protein folding and dynamics. We show that RX-DMD predicts α-PreSMos with high confidence confirmed by comparison to experimental NMR data. Moreover, the method also can dissect α-PreSMos in close vicinity to each other and indicate helix stability. Importantly, simulations with disordered regions forming helices in X-ray structures of complexes indicate that a preformed helix is frequently the binding element itself, while in other cases it may have a role in initiating the binding process. Our results indicate that RX-DMD provides a breakthrough in the structural and dynamical characterization of disordered proteins by generating the structural ensembles of IDPs even when experimental data are not available.
doi:10.1371/journal.pone.0095795
PMCID: PMC3998973  PMID: 24763499
2.  Computational studies reveal phosphorylation dependent changes in the unstructured R domain of CFTR 
Journal of molecular biology  2008;378(5):1052-1063.
The Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) is a cAMP dependent chloride channel that is mutated in cystic fibrosis, an inherited disease of high morbidity and mortality. The phosphorylation of its ∼200 amino acid R domain by protein kinase A is obligatory for channel gating under normal conditions. The R domain contains more than ten PKA phosphorylation sites. No individual site is essential but phosphorylation of increasing numbers of sites enables progressively greater channel activity. In spite of numerous studies of the role of the R domain in CFTR regulation, its mechanism of action remains largely unknown. This is because neither its structure nor its interactions with other parts of CFTR have been completely elucidated. Studies have shown that the R domain lacks well-defined secondary structural elements and is an intrinsically disordered region of the channel protein. Here, we have analyzed the disorder pattern and employed computational methods to explore low energy conformations of the R domain. Specific disorder and secondary structure patterns detected suggest the presence of Molecular Recognition Elements (MoREs) that may mediate phosphorylation regulated intra- and inter-domain interactions. Simulations were performed to generate an ensemble of accessible R domain conformations. Although the calculated structures may represent more compact conformers than occur in vivo, their secondary structure propensities are consistent with predictions and published experimental data. Equilibrium simulations of a mimic of a phosphorylated R domain showed that it exhibited an increased radius of gyration. In one possible interpretation of these findings, by changing its size, the globally unstructured R domain may act as an entropic spring to perturb the packing of membrane-spanning sequences that constitute the ion permeability pathway and thereby activate channel gating.
doi:10.1016/j.jmb.2008.03.033
PMCID: PMC2556564  PMID: 18423665
CFTR; R domain; phosphorylation; disordered protein; molecular dynamics
3.  Diminished Self-Chaperoning Activity of the ΔF508 Mutant of CFTR Results in Protein Misfolding 
PLoS Computational Biology  2008;4(2):e1000008.
The absence of a functional ATP Binding Cassette (ABC) protein called the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) from apical membranes of epithelial cells is responsible for cystic fibrosis (CF). Over 90% of CF patients carry at least one mutant allele with deletion of phenylalanine at position 508 located in the N-terminal nucleotide binding domain (NBD1). Biochemical and cell biological studies show that the ΔF508 mutant exhibits inefficient biosynthetic maturation and susceptibility to degradation probably due to misfolding of NBD1 and the resultant misassembly of other domains. However, little is known about the direct effect of the Phe508 deletion on the NBD1 folding, which is essential for rational design strategies of cystic fibrosis treatment. Here we show that the deletion of Phe508 alters the folding dynamics and kinetics of NBD1, thus possibly affecting the assembly of the complete CFTR. Using molecular dynamics simulations, we find that meta-stable intermediate states appearing on wild type and mutant folding pathways are populated differently and that their kinetic accessibilities are distinct. The structural basis of the increased misfolding propensity of the ΔF508 NBD1 mutant is the perturbation of interactions in residue pairs Q493/P574 and F575/F578 found in loop S7-H6. As a proof-of-principle that the S7-H6 loop conformation can modulate the folding kinetics of NBD1, we virtually design rescue mutations in the identified critical interactions to force the S7-H6 loop into the wild type conformation. Two redesigned NBD1-ΔF508 variants exhibited significantly higher folding probabilities than the original NBD1-ΔF508, thereby partially rescuing folding ability of the NBD1-ΔF508 mutant. We propose that these observed defects in folding kinetics of mutant NBD1 may also be modulated by structures separate from the 508 site. The identified structural determinants of increased misfolding propensity of NBD1-ΔF508 are essential information in correcting this pathogenic mutant.
Author Summary
Deletion of a single residue, phenylalanine at position 508, in the first nucleotide binding domain (NBD1) of the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) is present in approximately 90% of cystic fibrosis (CF) patients. Experiments show that this mutant protein exhibits inefficient biosynthetic maturation and susceptibility to degradation probably due to misfolding of NBD1 and the resultant incorrect interactions of other domains. However, little is known about the direct effect of the Phe508 deletion on NBD1 folding. Here, using molecular dynamics simulations of NBD1-WT, NBD1-F508A, and NBD1-ΔF508, we show that the deletion of Phe508 indeed alters the kinetics of NBD1 folding. We also find that the intermediate states appearing on wild type and mutant folding pathways are populated differently and that their kinetic accessibilities are distinct. Moreover, we identified critical interactions not necessarily localized near position 508, such as Q493/P574 and F575/F587, to be significant structural elements influencing the kinetic difference between wild type and mutant NBD1. We propose that these observed alterations in folding kinetics of mutant NBD1 result in misassembly of the whole multi-domain protein, thereby causing its premature degradation.
doi:10.1371/journal.pcbi.1000008
PMCID: PMC2265529  PMID: 18463704

Results 1-3 (3)