Search tips
Search criteria

Results 1-3 (3)

Clipboard (0)
more »
Year of Publication
Document Types
1.  Knowledge-based design of a biosensor to quantify localized ERK activation in living cells 
Chemistry & biology  2013;20(6):847-856.
Investigation of protein activation in living cells is fundamental to understand how proteins are influenced by the full complement of upstream regulators they experience. We describe here the generation of a biosensor based on the Designed Ankyrin Repeat Protein (DARPin) binding scaffold suited for intracellular applications. Combining selection and evolution from libraries, knowledge-based design and efficient and rapid testing of conjugate candidates, we created an ERK activity biosensor by derivatizing a DARPin specific for phosphorylated ERK (pERK) with a solvatochromic merocyanine dye (mero87), whose fluorescence increases upon pERK binding. The biosensor specifically responded to pERK2, recognized by its conformation, but not to non-phosphorylated ERK2 or other closely related mitogen-activated kinases tested. Activated endogenous ERK was visualized in mouse embryo fibroblasts incubated in 2% serum, revealing greater activation in the nucleus, perinuclear regions, and especially the nucleoli. Activity was greatly reduced by the MEK1/2 inhibitor U0126. The DARPin-based biosensor will serve as useful tool for studying biological functions of ERK in vitro and in vivo.
PMCID: PMC4154710  PMID: 23790495
2.  Light-regulation of protein dimerization and kinase activity in living cells using photocaged rapamycin and engineered FKBP 
We developed a new system for light-induced protein dimerization in living cells using a novel photocaged analog of rapamycin (pRap) together with an engineered rapamycin binding domain (iFKBP). Using focal adhesion kinase as a target, we demonstrated successful light-mediated regulation of protein interaction and localization in living cells. Modification of this approach enabled light-triggered activation of a protein kinase and initiation of kinase-induced phenotypic changes in vivo.
PMCID: PMC3133816  PMID: 21162531
3.  Engineered allosteric activation of kinases in living cells 
Nature biotechnology  2010;28(7):743-747.
Studies of cellular and tissue dynamics benefit greatly from tools that can control protein activity with specificity and precise timing in living systems. We describe here a new approach to confer allosteric regulation specifically on the catalytic activity of kinases. A highly conserved portion of the kinase catalytic domain is modified with a small protein insert that inactivates catalytic activity, but does not affect other protein interactions. Catalytic activity is restored by addition of rapamycin or non-immunosuppresive analogs (Fig. 1A). We demonstrate the approach by specifically activating focal adhesion kinase (FAK) within minutes in living cells, thereby demonstrating a novel role for FAK in regulation of membrane dynamics. Molecular modeling and mutagenesis indicate that the protein insert reduces activity by increasing the flexibility of the catalytic domain. Drug binding restores activity by increasing rigidity. Successful regulation of Src and p38 suggest that modification of this highly conserved site will be applicable to other kinases.
PMCID: PMC2902629  PMID: 20581846

Results 1-3 (3)