Search tips
Search criteria

Results 1-2 (2)

Clipboard (0)
Year of Publication
Document Types
1.  Protein Folding: Then and Now 
Over the past three decades the protein folding field has undergone monumental changes. Originally a purely academic question, how a protein folds has now become vital in understanding diseases and our abilities to rationally manipulate cellular life by engineering protein folding pathways. We review and contrast past and recent developments in the protein folding field. Specifically, we discuss the progress in our understanding of protein folding thermodynamics and kinetics, the properties of evasive intermediates, and unfolded states. We also discuss how some abnormalities in protein folding lead to protein aggregation and human diseases.
PMCID: PMC2173875  PMID: 17585870
2.  Natural Selection against Protein Aggregation on Self-Interacting and Essential Proteins in Yeast, Fly, and Worm 
Molecular Biology and Evolution  2008;25(8):1530-1533.
Protein aggregation is the phenomenon of protein self-association potentially leading to detrimental effects on physiology, which is closely related to numerous human diseases such as Alzheimer's and Parkinson's disease. Despite progress in understanding the mechanism of protein aggregation, how natural selection against protein aggregation acts on subunits of protein complexes and on proteins with different contributions to organism fitness remains largely unknown. Here, we perform a proteome-wide analysis by using an experimentally validated algorithm TANGO and utilizing sequence, interactomic and phenotype-based functional genomic data from yeast, fly, and nematode. We find that proteins that are capable of forming homooligomeric complex have lower aggregation propensity compared with proteins that do not function as homooligomer. Further, proteins that are essential to the fitness of an organism have lower aggregation propensity compared with nonessential ones. Our finding suggests that the selection force against protein aggregation acts across different hierarchies of biological system.
PMCID: PMC2727382  PMID: 18503047
natural selection; protein aggregation; functional genomics; proteome; Drosophila melanogaster; Caenorhabditis elegans

Results 1-2 (2)