PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-4 (4)
 

Clipboard (0)
None
Journals
Year of Publication
Document Types
1.  Preliminary Characterization of Mus musculus–Derived Pathogenic Strains of Leptospira borgpetersenii Serogroup Ballum in a Hamster Model 
Human and animal leptospirosis caused by Leptospira spp. belonging to serogroup Ballum has increased worldwide in the past decade. We report the isolation and serologic and molecular characterization of four L. borgpetersenii serogroup Ballum isolates obtained from Mus musculus, and preliminary virulence studies. These isolates are useful for diagnosis of leptospirosis and for epidemiologic studies of its virulence and pathogenic mechanisms.
doi:10.4269/ajtmh.2010.10-0120
PMCID: PMC2911180  PMID: 20682877
2.  Monitoring Leptospira Strain Collections: The Need for Quality Control 
The purpose of this study was to perform a 16S sequence-based quality control of two Leptospira strain collections. 16S rRNA gene sequencing was used to verify two Leptospira reference collections provided by the World Health Organization and maintained at a reference laboratory for leptospirosis in Brazil. Among the 89 serovars evaluated, four conflicting strains were identified in one of the collections. Although 16S rRNA gene sequencing cannot identify Leptospira beyond the species level, it is suitable for the identification of contamination and quality control of leptospiral reference collections. This study highlights the importance of the availability of high-quality 16S rRNA sequences in public databases. In addition, it emphasizes the need for periodical verifications and quality control of Leptospira reference collections.
doi:10.4269/ajtmh.2010.09-0558
PMCID: PMC2803514  PMID: 20065000
3.  High yield expression of leptospirosis vaccine candidates LigA and LipL32 in the methylotrophic yeast Pichia pastoris 
Background
Leptospirosis, a zoonosis caused by Leptospira spp., is recognized as an emergent infectious disease. Due to the lack of adequate diagnostic tools, vaccines are an attractive intervention strategy. Recombinant proteins produced in Escherichia coli have demonstrated promising results, albeit with variable efficacy. Pichia pastoris is an alternative host with several advantages for the production of recombinant proteins.
Results
The vaccine candidates LigANI and LipL32 were cloned and expressed in P. pastoris as secreted proteins. Large-scale expression resulted in a yield of 276 mg/L for LigANI and 285 mg/L for LipL32. The recombinant proteins were glycosylated and were recognized by antibodies present in the sera of patients with severe leptospirosis.
Conclusions
The expression of LigANI and LipL32 in P. pastoris resulted in a significant increase in yield compared to expression in E. coli. In addition, the proteins were secreted, allowing for easy purification, and retained the antigenic characteristics of the native proteins, demonstrating their potential application as subunit vaccine candidates.
doi:10.1186/1475-2859-9-98
PMCID: PMC3004844  PMID: 21134266
4.  Bioinformatics Describes Novel Loci for High Resolution Discrimination of Leptospira Isolates 
PLoS ONE  2010;5(10):e15335.
Background
Leptospirosis is one of the most widespread zoonoses in the world and with over 260 pathogenic serovars there is an urgent need for a molecular system of classification. The development of multilocus sequence typing (MLST) schemes for Leptospira spp. is addressing this issue. The aim of this study was to identify loci with potential to enhance Leptospira strain discrimination by sequencing-based methods.
Methodology and Principal Findings
We used bioinformatics to evaluate pre-existing loci with the potential to increase the discrimination of outbreak strains. Previously deposited sequence data were evaluated by phylogenetic analyses using either single or concatenated sequences. We identified and evaluated the applicability of the ligB, secY, rpoB and lipL41 loci, individually and in combination, to discriminate between 38 pathogenic Leptospira strains and to cluster them according to the species they belonged to. Pairwise identity among the loci ranged from 82.0–92.0%, while interspecies identity was 97.7–98.5%. Using the ligB-secY-rpoB-lipL41 superlocus it was possible to discriminate 34/38 strains, which belong to six pathogenic Leptospira species. In addition, the sequences were concatenated with the superloci from 16 sequence types from a previous MLST scheme employed to study the association of a leptospiral clone with an outbreak of human leptospirosis in Thailand. Their use enhanced the discriminative power of the existing scheme. The lipL41 and rpoB loci raised the resolution from 81.0–100%, but the enhanced scheme still remains limited to the L. interrogans and L. kirschneri species.
Conclusions
As the first aim of our study, the ligB-secY-rpoB-lipL41 superlocus demonstrated a satisfactory level of discrimination among the strains evaluated. Second, the inclusion of the rpoB and lipL41 loci to a MLST scheme provided high resolution for discrimination of strains within L. interrogans and L. kirschneri and might be useful in future epidemiological studies.
doi:10.1371/journal.pone.0015335
PMCID: PMC2955542  PMID: 21124728

Results 1-4 (4)