PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-4 (4)
 

Clipboard (0)
None
Journals
Authors
more »
Year of Publication
Document Types
1.  Genetic association analysis of COPD candidate genes with bronchodilator responsiveness 
Respiratory medicine  2008;103(4):552-557.
Airflow limitation in COPD patients is not fully reversible. However, there may be large variability in bronchodilator responsiveness (BDR) among COPD patients, and familial aggregation of BDR suggests a genetic component. Therefore we investigated the association between six candidate genes and BDR in subjects with severe COPD. A total of 389 subjects from the National Emphysema Treatment Trial (NETT) were analyzed. Bronchodilator responsiveness to albuterol was expressed in three ways: absolute change in FEV1, change in FEV1 as a percent of baseline FEV1, and change in FEV1 as a percent of predicted FEV1. Genotyping was completed for 122 single nucleotide polymorphisms (SNPs) in six candidate genes (EPHX1, SFTPB, TGFB1, SERPINE2, GSTP1, ADRB2). Associations between BDR phenotypes and SNP genotypes were tested using linear regression, adjusting for age, sex, pack-years of smoking, and height. Genes associated with BDR phenotypes in the NETT subjects were assessed for replication in 127 pedigrees from the Boston Early-Onset COPD (EOCOPD) Study. Three SNPs in EPHX1 (p = 0.009 – 0.04), three SNPs in SERPINE2 (p = 0.004 – 0.05) and two SNPs in ADRB2 (0.04 – 0.05) were significantly associated with BDR phenotypes in NETT subjects. BDR. One SNP in EPHX1 (rs1009668, p = 0.04) was significantly replicated in EOCOPD subjects. SNPs in SFTPB, TGFB1, and GSTP1 genes were not associated with BDR. In conclusion, a polymorphism of EPHX1 was associated with bronchodilator responsiveness phenotypes in subjects with severe COPD.
doi:10.1016/j.rmed.2008.10.025
PMCID: PMC2745950  PMID: 19111454
bronchodilator responsiveness; chronic obstructive pulmonary disease; genetics; association analysis
2.  Molecular Biomarkers for Quantitative and Discrete COPD Phenotypes 
Chronic obstructive pulmonary disease (COPD) is an inflammatory lung disorder with complex pathological features and largely unknown etiology. The identification of biomarkers for this disease could aid the development of methods to facilitate earlier diagnosis, the classification of disease subtypes, and provide a means to define therapeutic response. To identify gene expression biomarkers, we completed expression profiling of RNA derived from the lung tissue of 56 subjects with varying degrees of airflow obstruction using the Affymetrix U133 Plus 2.0 array. We applied multiple, independent analytical methods to define biomarkers for either discrete or quantitative disease phenotypes. Analysis of differential expression between cases (n = 15) and controls (n = 18) identified a set of 65 discrete biomarkers. Correlation of gene expression with quantitative measures of airflow obstruction (FEV1%predicted or FEV1/FVC) identified a set of 220 biomarkers. Biomarker genes were enriched in functions related to DNA binding and regulation of transcription. We used this group of biomarkers to predict disease in an unrelated data set, generated from patients with severe emphysema, with 97% accuracy. Our data contribute to the understanding of gene expression changes occurring in the lung tissue of patients with obstructive lung disease and provide additional insight into potential mechanisms involved in the disease process. Furthermore, we present the first gene expression biomarker for COPD validated in an independent data set.
doi:10.1165/rcmb.2008-0114OC
PMCID: PMC2645534  PMID: 18849563
microarray; gene expression; emphysema; lung function
3.  Polymorphic Variation in Surfactant Protein B is Associated with COPD Exacerbations 
Rationale
COPD exacerbations reduce quality of life and increase mortality. Genetic variation may explain the substantial variability seen in exacerbation frequency among COPD subjects with similar lung function. We analyzed whether polymorphisms in five candidate genes previously associated with COPD susceptibility also demonstrate association with COPD exacerbations.
Methods
Eighty-eight single nucleotide polymorphisms in microsomal epoxide hydrolase (EPHX1), transforming growth factor beta 1 (TGFB1), SERPINE2, glutathione S-transferase pi (GSTP1), and surfactant protein B (SFTPB) were genotyped in 389 non-Hispanic white participants in the National Emphysema Treatment Trial. Exacerbations were defined as COPD-related emergency room visits or hospitalizations using Centers for Medicare and Medicaid Services claims data.
Measurements and Main Results
216 subjects (56%) experienced one or more exacerbations during the study period. An SFTPB promoter polymorphism, rs3024791, was associated with COPD exacerbations (p=0.008). Logistic regression models confirmed the association with rs3024791 (p = 0.007). Poisson regression models demonstrated association of multiple SFTPB SNPs with exacerbation rates: rs2118177 (p = 0.006), rs2304566 (p = 0.002), rs1130866 (p = 0.04), and rs3024791 (p = 0.002). Polymorphisms in EPHX1, GSTP1, TGFB1, and SERPINE2 did not demonstrate association with COPD exacerbations.
Conclusions
Variants in SFTPB are associated with COPD susceptibility and COPD exacerbation frequency.
doi:10.1183/09031936.00040208
PMCID: PMC2761762  PMID: 18550614
association analysis; COPD; exacerbations; genetics; surfactant protein B; single nucleotide polymorphisms
4.  National Emphysema Treatment Trial State of the Art 
Although a hereditary contribution to emphysema has been long suspected, severe α1-antitrypsin deficiency remains the only conclusively proven genetic risk factor for chronic obstructive pulmonary disease (COPD). Recently, genome-wide linkage analysis has led to the identification of two promising candidate genes for COPD: TGFB1 and SERPINE2. Like multiple other COPD candidate gene associations, even these positionally identified genes have not been universally replicated across all studies. Differences in phenotype definition may contribute to nonreplication in genetic studies of heterogeneous disorders such as COPD. The use of precisely measured phenotypes, including emphysema quantification on high-resolution chest computed tomography scans, has aided in the discovery of additional genes for clinically relevant COPD-related traits. The use of computed tomography scans to assess emphysema and airway disease as well as newer genetic technologies, including gene expression microarrays and genome-wide association studies, has great potential to detect novel genes affecting COPD susceptibility, severity, and response to treatment.
doi:10.1513/pats.200706-078ET
PMCID: PMC2645324  PMID: 18453360
α1-antitrypsin deficiency; chronic obstructive pulmonary disease; genetic linkage; single-nucleotide polymorphism

Results 1-4 (4)