PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-2 (2)
 

Clipboard (0)
None
Journals
Authors
more »
Year of Publication
Document Types
1.  Xenobiotic metabolizing enzyme gene polymorphisms predict response to lung volume reduction surgery 
Respiratory Research  2007;8(1):59.
Background
In the National Emphysema Treatment Trial (NETT), marked variability in response to lung volume reduction surgery (LVRS) was observed. We sought to identify genetic differences which may explain some of this variability.
Methods
In 203 subjects from the NETT Genetics Ancillary Study, four outcome measures were used to define response to LVRS at six months: modified BODE index, post-bronchodilator FEV1, maximum work achieved on a cardiopulmonary exercise test, and University of California, San Diego shortness of breath questionnaire. Sixty-four single nucleotide polymorphisms (SNPs) were genotyped in five genes previously shown to be associated with chronic obstructive pulmonary disease susceptibility, exercise capacity, or emphysema distribution.
Results
A SNP upstream from glutathione S-transferase pi (GSTP1; p = 0.003) and a coding SNP in microsomal epoxide hydrolase (EPHX1; p = 0.02) were each associated with change in BODE score. These effects appeared to be strongest in patients in the non-upper lobe predominant, low exercise subgroup. A promoter SNP in EPHX1 was associated with change in BODE score (p = 0.008), with the strongest effects in patients with upper lobe predominant emphysema and low exercise capacity. One additional SNP in GSTP1 and three additional SNPs in EPHX1 were associated (p < 0.05) with additional LVRS outcomes. None of these SNP effects were seen in 166 patients randomized to medical therapy.
Conclusion
Genetic variants in GSTP1 and EPHX1, two genes encoding xenobiotic metabolizing enzymes, were predictive of response to LVRS. These polymorphisms may identify patients most likely to benefit from LVRS.
doi:10.1186/1465-9921-8-59
PMCID: PMC2048957  PMID: 17686149
2.  Association of IREB2 and CHRNA3 polymorphisms with airflow obstruction in severe alpha-1 antitrypsin deficiency 
Respiratory Research  2012;13(1):16.
Background
The development of COPD in subjects with alpha-1 antitrypsin (AAT) deficiency is likely to be influenced by modifier genes. Genome-wide association studies and integrative genomics approaches in COPD have demonstrated significant associations with SNPs in the chromosome 15q region that includes CHRNA3 (cholinergic nicotine receptor alpha3) and IREB2 (iron regulatory binding protein 2).
We investigated whether SNPs in the chromosome 15q region would be modifiers for lung function and COPD in AAT deficiency.
Methods
The current analysis included 378 PIZZ subjects in the AAT Genetic Modifiers Study and a replication cohort of 458 subjects from the UK AAT Deficiency National Registry. Nine SNPs in LOC123688, CHRNA3 and IREB2 were selected for genotyping. FEV1 percent of predicted and FEV1/FVC ratio were analyzed as quantitative phenotypes. Family-based association analysis was performed in the AAT Genetic Modifiers Study. In the replication set, general linear models were used for quantitative phenotypes and logistic regression models were used for the presence/absence of emphysema or COPD.
Results
Three SNPs (rs2568494 in IREB2, rs8034191 in LOC123688, and rs1051730 in CHRNA3) were associated with pre-bronchodilator FEV1 percent of predicted in the AAT Genetic Modifiers Study. Two SNPs (rs2568494 and rs1051730) were associated with the post-bronchodilator FEV1 percent of predicted and pre-bronchodilator FEV1/FVC ratio; SNP-by-gender interactions were observed. In the UK National Registry dataset, rs2568494 was significantly associated with emphysema in the male subgroup; significant SNP-by-smoking interactions were observed.
Conclusions
IREB2 and CHRNA3 are potential genetic modifiers of COPD phenotypes in individuals with severe AAT deficiency and may be sex-specific in their impact.
doi:10.1186/1465-9921-13-16
PMCID: PMC3306733  PMID: 22356581
CHRNA3; Chronic obstructive pulmonary disease; Genetic association analysis; Genetic modifiers; IREB2

Results 1-2 (2)