PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-5 (5)
 

Clipboard (0)
None
Journals
Year of Publication
Document Types
1.  Concordance of Genotypes in Pre– and Post–Lung Transplantation DNA Samples 
Genetic epidemiology studies of end-stage lung disease are potentially hindered by low numbers of participants due to early death of patients from the underlying disease, or due to exclusion from studies after patients have had lung transplants, because of concern about bias of genotype data due to chimerism. The number of participants enrolled in genetic studies of end-stage lung disease could be increased by including those individuals who have undergone lung transplant. We hypothesized that individuals who have had lung transplants can be included in genetic epidemiology studies that use single nucleotide polymorphism and short tandem repeat marker data, without confounding due to chimerism. Ten probands with severe, early-onset chronic obstructive pulmonary disease were included in this analysis. Pre– and post–lung transplant DNA samples were used in the investigation of concordance of genotype results for 12 short tandem repeat markers and 23 single nucleotide polymorphisms. Concordance was observed for all genotypes before and after lung transplant. We conclude that the risk of biasing genetic epidemiology studies due to donor lung–related DNA microchimerism is low, and that the inclusion of post–lung transplantation participants will allow for larger genetic epidemiology studies of individuals with end-stage lung disease.
doi:10.1165/rcmb.2005-0142OC
PMCID: PMC2715347  PMID: 15994430
genetic epidemiology; lung; chimerism; transplantation
2.  A genome-wide association study of COPD identifies a susceptibility locus on chromosome 19q13 
Human Molecular Genetics  2011;21(4):947-957.
The genetic risk factors for chronic obstructive pulmonary disease (COPD) are still largely unknown. To date, genome-wide association studies (GWASs) of limited size have identified several novel risk loci for COPD at CHRNA3/CHRNA5/IREB2, HHIP and FAM13A; additional loci may be identified through larger studies. We performed a GWAS using a total of 3499 cases and 1922 control subjects from four cohorts: the Evaluation of COPD Longitudinally to Identify Predictive Surrogate Endpoints (ECLIPSE); the Normative Aging Study (NAS) and National Emphysema Treatment Trial (NETT); Bergen, Norway (GenKOLS); and the COPDGene study. Genotyping was performed on Illumina platforms with additional markers imputed using 1000 Genomes data; results were summarized using fixed-effect meta-analysis. We identified a new genome-wide significant locus on chromosome 19q13 (rs7937, OR = 0.74, P = 2.9 × 10−9). Genotyping this single nucleotide polymorphism (SNP) and another nearby SNP in linkage disequilibrium (rs2604894) in 2859 subjects from the family-based International COPD Genetics Network study (ICGN) demonstrated supportive evidence for association for COPD (P = 0.28 and 0.11 for rs7937 and rs2604894), pre-bronchodilator FEV1 (P = 0.08 and 0.04) and severe (GOLD 3&4) COPD (P = 0.09 and 0.017). This region includes RAB4B, EGLN2, MIA and CYP2A6, and has previously been identified in association with cigarette smoking behavior.
doi:10.1093/hmg/ddr524
PMCID: PMC3298111  PMID: 22080838
3.  Variants in FAM13A are associated with chronic obstructive pulmonary disease 
Nature genetics  2010;42(3):200-202.
Substantial evidence suggests that there is genetic susceptibility to chronic obstructive pulmonary disease (COPD). To identify common genetic risk variants, we performed a genome-wide association study in 2940 cases and 1380 smoking controls with normal lung function. We demonstrate a novel susceptibility locus at 4q22.1 in FAM13A (rs7671167, OR=0.76, P=8.6×10−8) and provide evidence of replication in one case-control and two family-based cohorts (for all studies, combined P=1.2×10−11).
doi:10.1038/ng.535
PMCID: PMC2828499  PMID: 20173748
4.  Attempted Replication of Reported Chronic Obstructive Pulmonary Disease Candidate Gene Associations 
Case-control studies have successfully identified many significant genetic associations for complex diseases, but lack of replication has been a criticism of case-control genetic association studies in general. We selected 12 candidate genes with reported associations to chronic obstructive pulmonary disease (COPD) and genotyped 29 polymorphisms in a family-based study and in a case-control study. In the Boston Early-Onset COPD Study families, significant associations with quantitative and/or qualitative COPD-related phenotypes were found for the tumor necrosis factor (TNF)-α −308G>A promoter polymorphism (P < 0.02), a coding variant in surfactant protein B (SFTPB Thr131Ile) (P = 0.03), and the (GT)31 allele of the heme oxygenase (HMOX1) promoter short tandem repeat (P = 0.02). In the case-control study, the SFTPB Thr131Ile polymorphism was associated with COPD, but only in the presence of a gene-by-environment interaction term (P = 0.01 for both main effect and interaction). The 30-repeat, but not the 31-repeat, allele of HMOX1 was associated (P = 0.04). The TNF −308G>A polymorphism was not significant. In addition, the microsomal epoxide hydrolase “fast” allele (EPHX1 His139Arg) was significantly associated in the case-control study (P = 0.03). Although some evidence for replication was found for SFTPB and HMOX1, none of the previously published COPD genetic associations was convincingly replicated across both study designs.
doi:10.1165/rcmb.2005-0073OC
PMCID: PMC2715305  PMID: 15817713
association studies; case-control studies; emphysema; genetics; single nucleotide polymorphism
5.  Genome-Wide Association Analysis of Body Mass in Chronic Obstructive Pulmonary Disease 
Cachexia, whether assessed by body mass index (BMI) or fat-free mass index (FFMI), affects a significant proportion of patients with chronic obstructive pulmonary disease (COPD), and is an independent risk factor for increased mortality, increased emphysema, and more severe airflow obstruction. The variable development of cachexia among patients with COPD suggests a role for genetic susceptibility. The objective of the present study was to determine genetic susceptibility loci involved in the development of low BMI and FFMI in subjects with COPD. A genome-wide association study (GWAS) of BMI was conducted in three independent cohorts of European descent with Global Initiative for Chronic Obstructive Lung Disease stage II or higher COPD: Evaluation of COPD Longitudinally to Identify Predictive Surrogate End-Points (ECLIPSE; n = 1,734); Norway-Bergen cohort (n = 851); and a subset of subjects from the National Emphysema Treatment Trial (NETT; n = 365). A genome-wide association of FFMI was conducted in two of the cohorts (ECLIPSE and Norway). In the combined analyses, a significant association was found between rs8050136, located in the first intron of the fat mass and obesity–associated (FTO) gene, and BMI (P = 4.97 × 10−7) and FFMI (P = 1.19 × 10−7). We replicated the association in a fourth, independent cohort consisting of 502 subjects with COPD from COPDGene (P = 6 × 10−3). Within the largest contributing cohort of our analysis, lung function, as assessed by forced expiratory volume at 1 second, varied significantly by FTO genotype. Our analysis suggests a potential role for the FTO locus in the determination of anthropomorphic measures associated with COPD.
doi:10.1165/rcmb.2010-0294OC
PMCID: PMC3266061  PMID: 21037115
chronic obstructive pulmonary disease genetics; chronic obstructive pulmonary disease epidemiology; chronic obstructive pulmonary disease metabolism; genome-wide association study

Results 1-5 (5)