Search tips
Search criteria

Results 1-10 (10)

Clipboard (0)
Year of Publication
Document Types
1.  Concordance of Genotypes in Pre– and Post–Lung Transplantation DNA Samples 
Genetic epidemiology studies of end-stage lung disease are potentially hindered by low numbers of participants due to early death of patients from the underlying disease, or due to exclusion from studies after patients have had lung transplants, because of concern about bias of genotype data due to chimerism. The number of participants enrolled in genetic studies of end-stage lung disease could be increased by including those individuals who have undergone lung transplant. We hypothesized that individuals who have had lung transplants can be included in genetic epidemiology studies that use single nucleotide polymorphism and short tandem repeat marker data, without confounding due to chimerism. Ten probands with severe, early-onset chronic obstructive pulmonary disease were included in this analysis. Pre– and post–lung transplant DNA samples were used in the investigation of concordance of genotype results for 12 short tandem repeat markers and 23 single nucleotide polymorphisms. Concordance was observed for all genotypes before and after lung transplant. We conclude that the risk of biasing genetic epidemiology studies due to donor lung–related DNA microchimerism is low, and that the inclusion of post–lung transplantation participants will allow for larger genetic epidemiology studies of individuals with end-stage lung disease.
PMCID: PMC2715347  PMID: 15994430
genetic epidemiology; lung; chimerism; transplantation
2.  Multistudy Fine Mapping of Chromosome 2q Identifies XRCC5 as a Chronic Obstructive Pulmonary Disease Susceptibility Gene 
Rationale: Several family-based studies have identified genetic linkage for lung function and airflow obstruction to chromosome 2q.
Objectives: We hypothesized that merging results of high-resolution single nucleotide polymorphism (SNP) mapping in four separate populations would lead to the identification of chronic obstructive pulmonary disease (COPD) susceptibility genes on chromosome 2q.
Methods: Within the chromosome 2q linkage region, 2,843 SNPs were genotyped in 806 COPD cases and 779 control subjects from Norway, and 2,484 SNPs were genotyped in 309 patients with severe COPD from the National Emphysema Treatment Trial and 330 community control subjects. Significant associations from the combined results across the two case-control studies were followed up in 1,839 individuals from 603 families from the International COPD Genetics Network (ICGN) and in 949 individuals from 127 families in the Boston Early-Onset COPD Study.
Measurements and Main Results: Merging the results of the two case-control analyses, 14 of the 790 overlapping SNPs had a combined P < 0.01. Two of these 14 SNPs were consistently associated with COPD in the ICGN families. The association with one SNP, located in the gene XRCC5, was replicated in the Boston Early-Onset COPD Study, with a combined P = 2.51 × 10−5 across the four studies, which remains significant when adjusted for multiple testing (P = 0.02). Genotype imputation confirmed the association with SNPs in XRCC5.
Conclusions: By combining data from COPD genetic association studies conducted in four independent patient samples, we have identified XRCC5, an ATP-dependent DNA helicase, as a potential COPD susceptibility gene.
PMCID: PMC2937234  PMID: 20463177
emphysema; genetic linkage; metaanalysis; single nucleotide polymorphism
3.  Genetic association analysis of COPD candidate genes with bronchodilator responsiveness 
Respiratory medicine  2008;103(4):552-557.
Airflow limitation in COPD patients is not fully reversible. However, there may be large variability in bronchodilator responsiveness (BDR) among COPD patients, and familial aggregation of BDR suggests a genetic component. Therefore we investigated the association between six candidate genes and BDR in subjects with severe COPD. A total of 389 subjects from the National Emphysema Treatment Trial (NETT) were analyzed. Bronchodilator responsiveness to albuterol was expressed in three ways: absolute change in FEV1, change in FEV1 as a percent of baseline FEV1, and change in FEV1 as a percent of predicted FEV1. Genotyping was completed for 122 single nucleotide polymorphisms (SNPs) in six candidate genes (EPHX1, SFTPB, TGFB1, SERPINE2, GSTP1, ADRB2). Associations between BDR phenotypes and SNP genotypes were tested using linear regression, adjusting for age, sex, pack-years of smoking, and height. Genes associated with BDR phenotypes in the NETT subjects were assessed for replication in 127 pedigrees from the Boston Early-Onset COPD (EOCOPD) Study. Three SNPs in EPHX1 (p = 0.009 – 0.04), three SNPs in SERPINE2 (p = 0.004 – 0.05) and two SNPs in ADRB2 (0.04 – 0.05) were significantly associated with BDR phenotypes in NETT subjects. BDR. One SNP in EPHX1 (rs1009668, p = 0.04) was significantly replicated in EOCOPD subjects. SNPs in SFTPB, TGFB1, and GSTP1 genes were not associated with BDR. In conclusion, a polymorphism of EPHX1 was associated with bronchodilator responsiveness phenotypes in subjects with severe COPD.
PMCID: PMC2745950  PMID: 19111454
bronchodilator responsiveness; chronic obstructive pulmonary disease; genetics; association analysis
4.  Molecular Biomarkers for Quantitative and Discrete COPD Phenotypes 
Chronic obstructive pulmonary disease (COPD) is an inflammatory lung disorder with complex pathological features and largely unknown etiology. The identification of biomarkers for this disease could aid the development of methods to facilitate earlier diagnosis, the classification of disease subtypes, and provide a means to define therapeutic response. To identify gene expression biomarkers, we completed expression profiling of RNA derived from the lung tissue of 56 subjects with varying degrees of airflow obstruction using the Affymetrix U133 Plus 2.0 array. We applied multiple, independent analytical methods to define biomarkers for either discrete or quantitative disease phenotypes. Analysis of differential expression between cases (n = 15) and controls (n = 18) identified a set of 65 discrete biomarkers. Correlation of gene expression with quantitative measures of airflow obstruction (FEV1%predicted or FEV1/FVC) identified a set of 220 biomarkers. Biomarker genes were enriched in functions related to DNA binding and regulation of transcription. We used this group of biomarkers to predict disease in an unrelated data set, generated from patients with severe emphysema, with 97% accuracy. Our data contribute to the understanding of gene expression changes occurring in the lung tissue of patients with obstructive lung disease and provide additional insight into potential mechanisms involved in the disease process. Furthermore, we present the first gene expression biomarker for COPD validated in an independent data set.
PMCID: PMC2645534  PMID: 18849563
microarray; gene expression; emphysema; lung function
5.  Polymorphic Variation in Surfactant Protein B is Associated with COPD Exacerbations 
COPD exacerbations reduce quality of life and increase mortality. Genetic variation may explain the substantial variability seen in exacerbation frequency among COPD subjects with similar lung function. We analyzed whether polymorphisms in five candidate genes previously associated with COPD susceptibility also demonstrate association with COPD exacerbations.
Eighty-eight single nucleotide polymorphisms in microsomal epoxide hydrolase (EPHX1), transforming growth factor beta 1 (TGFB1), SERPINE2, glutathione S-transferase pi (GSTP1), and surfactant protein B (SFTPB) were genotyped in 389 non-Hispanic white participants in the National Emphysema Treatment Trial. Exacerbations were defined as COPD-related emergency room visits or hospitalizations using Centers for Medicare and Medicaid Services claims data.
Measurements and Main Results
216 subjects (56%) experienced one or more exacerbations during the study period. An SFTPB promoter polymorphism, rs3024791, was associated with COPD exacerbations (p=0.008). Logistic regression models confirmed the association with rs3024791 (p = 0.007). Poisson regression models demonstrated association of multiple SFTPB SNPs with exacerbation rates: rs2118177 (p = 0.006), rs2304566 (p = 0.002), rs1130866 (p = 0.04), and rs3024791 (p = 0.002). Polymorphisms in EPHX1, GSTP1, TGFB1, and SERPINE2 did not demonstrate association with COPD exacerbations.
Variants in SFTPB are associated with COPD susceptibility and COPD exacerbation frequency.
PMCID: PMC2761762  PMID: 18550614
association analysis; COPD; exacerbations; genetics; surfactant protein B; single nucleotide polymorphisms
6.  Genetic Determinants of Emphysema Distribution in the National Emphysema Treatment Trial 
Rationale: Computed tomography (CT) scanning of the lung may reduce phenotypic heterogeneity in defining subjects with chronic obstructive pulmonary disease (COPD), and allow identification of genetic determinants of emphysema severity and distribution.
Objectives: We sought to identify genes associated with CT scan distribution of emphysema in individuals without α1-antitrypsin deficiency but with severe COPD.
Methods: We evaluated baseline CT densitometry phenotypes in 282 individuals with emphysema enrolled in the Genetics Ancillary Study of the National Emphysema Treatment Trial, and used regression models to identify genetic variants associated with emphysema distribution.
Measurements and Main Results: Emphysema distribution was assessed by two methods—assessment by radiologists and by computerized density mask quantitation, using a threshold of −950 Hounsfield units. A total of 77 polymorphisms in 20 candidate genes were analyzed for association with distribution of emphysema. GSTP1, EPHX1, and MMP1 polymorphisms were associated with the densitometric, apical-predominant distribution of emphysema (p value range = 0.001–0.050). When an apical-predominant phenotype was defined by the radiologist scoring method, GSTP1 and EPHX1 single-nucleotide polymorphisms were found to be significantly associated. In a case–control analysis of COPD susceptibility limited to cases with densitometric upper-lobe–predominant cases, the EPHX1 His139Arg single-nucleotide polymorphism was associated with COPD (p = 0.005).
Conclusions: Apical and basal emphysematous destruction appears to be influenced by different genes. Polymorphisms in the xenobiotic enzymes, GSTP1 and EPHX1, are associated with apical-predominant emphysema. Altered detoxification of cigarette smoke metabolites may contribute to emphysema distribution, and these findings may lead to further insight into genetic determinants of emphysema.
PMCID: PMC2049064  PMID: 17363767
COPD; genetics; association analysis; computed tomography; emphysema
9.  Genetic Association Analysis of Functional Impairment in Chronic Obstructive Pulmonary Disease 
Rationale: Patients with severe chronic obstructive pulmonary disease (COPD) may have varying levels of disability despite similar levels of lung function. This variation may reflect different COPD subtypes, which may have different genetic predispositions.
Objectives: To identify genetic associations for COPD-related phenotypes, including measures of exercise capacity, pulmonary function, and respiratory symptoms.
Methods: In 304 subjects from the National Emphysema Treatment Trial, we genotyped 80 markers in 22 positional and/or biologically plausible candidate genes. Regression models were used to test for association, using a test–replication approach to guard against false-positive results. For significant associations, effect estimates were recalculated using the entire cohort. Positive associations with dyspnea were confirmed in families from the Boston Early-Onset COPD Study.
Results: The test–replication approach identified four genes—microsomal epoxide hydrolase (EPHX1), latent transforming growth factor-β binding protein-4 (LTBP4), surfactant protein B (SFTPB), and transforming growth factor-β1 (TGFB1)—that were associated with COPD-related phenotypes. In all subjects, single-nucleotide polymorphisms (SNPs) in EPHX1 (p ⩽ 0.03) and in LTBP4 (p ⩽ 0.03) were associated with maximal output on cardiopulmonary exercise testing. Markers in LTBP4 (p ⩽ 0.05) and SFTPB (p = 0.005) were associated with 6-min walk test distance. SNPs in EPHX1 were associated with carbon monoxide diffusing capacity (p ⩽ 0.04). Three SNPs in TGFB1 were associated with dyspnea (p ⩽ 0.002), one of which replicated in the family study (p = 0.02).
Conclusions: Polymorphisms in several genes seem to be associated with COPD-related traits other than FEV1. These associations may identify genes in pathways important for COPD pathogenesis.
PMCID: PMC2662917  PMID: 16456143
dyspnea; emphysema; exercise tolerance; genetic association; pulmonary function tests
10.  Attempted Replication of Reported Chronic Obstructive Pulmonary Disease Candidate Gene Associations 
Case-control studies have successfully identified many significant genetic associations for complex diseases, but lack of replication has been a criticism of case-control genetic association studies in general. We selected 12 candidate genes with reported associations to chronic obstructive pulmonary disease (COPD) and genotyped 29 polymorphisms in a family-based study and in a case-control study. In the Boston Early-Onset COPD Study families, significant associations with quantitative and/or qualitative COPD-related phenotypes were found for the tumor necrosis factor (TNF)-α −308G>A promoter polymorphism (P < 0.02), a coding variant in surfactant protein B (SFTPB Thr131Ile) (P = 0.03), and the (GT)31 allele of the heme oxygenase (HMOX1) promoter short tandem repeat (P = 0.02). In the case-control study, the SFTPB Thr131Ile polymorphism was associated with COPD, but only in the presence of a gene-by-environment interaction term (P = 0.01 for both main effect and interaction). The 30-repeat, but not the 31-repeat, allele of HMOX1 was associated (P = 0.04). The TNF −308G>A polymorphism was not significant. In addition, the microsomal epoxide hydrolase “fast” allele (EPHX1 His139Arg) was significantly associated in the case-control study (P = 0.03). Although some evidence for replication was found for SFTPB and HMOX1, none of the previously published COPD genetic associations was convincingly replicated across both study designs.
PMCID: PMC2715305  PMID: 15817713
association studies; case-control studies; emphysema; genetics; single nucleotide polymorphism

Results 1-10 (10)