PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-8 (8)
 

Clipboard (0)
None
Journals
Year of Publication
Document Types
1.  Variable DNA Methylation Is Associated with Chronic Obstructive Pulmonary Disease and Lung Function 
Rationale: Chronic obstructive pulmonary disease (COPD) is associated with local (lung) and systemic (blood) inflammation and manifestations. DNA methylation is an important regulator of gene transcription, and global and specific gene methylation marks may vary with cigarette smoke exposure.
Objectives: To perform a comprehensive assessment of methylation marks in DNA from subjects well phenotyped for nonneoplastic lung disease.
Methods: We conducted array-based methylation screens, using a test-replication approach, in two family-based cohorts (n = 1,085 and 369 subjects).
Measurements and Main Results: We observed 349 CpG sites significantly associated with the presence and severity of COPD in both cohorts. Seventy percent of the associated CpG sites were outside of CpG islands, with the majority of CpG sites relatively hypomethylated. Gene ontology analysis based on these 349 CpGs (330 genes) suggested the involvement of a number of genes responsible for immune and inflammatory system pathways, responses to stress and external stimuli, as well as wound healing and coagulation cascades. Interestingly, our observations include significant, replicable associations between SERPINA1 hypomethylation and COPD and lower average lung function phenotypes (combined P values: COPD, 1.5 × 10−23; FEV1/FVC, 1.5 × 10−35; FEV1, 2.2 × 10−40).
Conclusions: Genetic and epigenetic pathways may both contribute to COPD. Many of the top associations between COPD and DNA methylation occur in biologically plausible pathways. This large-scale analysis suggests that DNA methylation may be a biomarker of COPD and may highlight new pathways of COPD pathogenesis.
doi:10.1164/rccm.201108-1382OC
PMCID: PMC3297093  PMID: 22161163
chronic obstructive pulmonary disease; epigenetics; DNA methylation; smoking
2.  Genome-Wide Association Analysis of Body Mass in Chronic Obstructive Pulmonary Disease 
Cachexia, whether assessed by body mass index (BMI) or fat-free mass index (FFMI), affects a significant proportion of patients with chronic obstructive pulmonary disease (COPD), and is an independent risk factor for increased mortality, increased emphysema, and more severe airflow obstruction. The variable development of cachexia among patients with COPD suggests a role for genetic susceptibility. The objective of the present study was to determine genetic susceptibility loci involved in the development of low BMI and FFMI in subjects with COPD. A genome-wide association study (GWAS) of BMI was conducted in three independent cohorts of European descent with Global Initiative for Chronic Obstructive Lung Disease stage II or higher COPD: Evaluation of COPD Longitudinally to Identify Predictive Surrogate End-Points (ECLIPSE; n = 1,734); Norway-Bergen cohort (n = 851); and a subset of subjects from the National Emphysema Treatment Trial (NETT; n = 365). A genome-wide association of FFMI was conducted in two of the cohorts (ECLIPSE and Norway). In the combined analyses, a significant association was found between rs8050136, located in the first intron of the fat mass and obesity–associated (FTO) gene, and BMI (P = 4.97 × 10−7) and FFMI (P = 1.19 × 10−7). We replicated the association in a fourth, independent cohort consisting of 502 subjects with COPD from COPDGene (P = 6 × 10−3). Within the largest contributing cohort of our analysis, lung function, as assessed by forced expiratory volume at 1 second, varied significantly by FTO genotype. Our analysis suggests a potential role for the FTO locus in the determination of anthropomorphic measures associated with COPD.
doi:10.1165/rcmb.2010-0294OC
PMCID: PMC3266061  PMID: 21037115
chronic obstructive pulmonary disease genetics; chronic obstructive pulmonary disease epidemiology; chronic obstructive pulmonary disease metabolism; genome-wide association study
3.  Systemic Steroid Exposure Is Associated with Differential Methylation in Chronic Obstructive Pulmonary Disease 
Rationale: Systemic glucocorticoids are used therapeutically to treat a variety of medical conditions. Epigenetic processes such as DNA methylation may reflect exposure to glucocorticoids and may be involved in mediating the responses and side effects associated with these medications.
Objectives: To test the hypothesis that differences in DNA methylation are associated with current systemic steroid use.
Methods: We obtained DNA methylation data at 27,578 CpG sites in 14,475 genes throughout the genome in two large, independent cohorts: the International COPD Genetics Network (ndiscovery = 1,085) and the Boston Early Onset COPD study (nreplication = 369). Sites were tested for association with current systemic steroid use using generalized linear mixed models.
Measurements and Main Results: A total of 511 sites demonstrated significant differential methylation by systemic corticosteroid use in all three of our primary models. Pyrosequencing validation confirmed robust differential methylation at CpG sites annotated to genes such as SLC22A18, LRP3, HIPK3, SCNN1A, FXYD1, IRF7, AZU1, SIT1, GPR97, ABHD16B, and RABGEF1. Functional annotation clustering demonstrated significant enrichment in intrinsic membrane components, hemostasis and coagulation, cellular ion homeostasis, leukocyte and lymphocyte activation and chemotaxis, protein transport, and responses to nutrients.
Conclusions: Our analyses suggest that systemic steroid use is associated with site-specific differential methylation throughout the genome. Differentially methylated CpG sites were found in biologically plausible and previously unsuspected pathways; these genes and pathways may be relevant in the development of novel targeted therapies.
doi:10.1164/rccm.201207-1280OC
PMCID: PMC3622442  PMID: 23065012
DNA methylation; glucocorticoids; chronic obstructive pulmonary disease
4.  Cigarette smoking behaviors and time since quitting are associated with differential DNA methylation across the human genome 
Human Molecular Genetics  2012;21(13):3073-3082.
The impact of cigarette smoking can persist for extended periods following smoking cessation and may involve epigenetic reprogramming. Changes in DNA methylation associated with smoking may help to identify molecular pathways that contribute to the latency between exposure and disease onset. Cross-sectional cohort data from subjects in the International COPD Genetics Network (n = 1085) and the Boston Early-Onset COPD study (n = 369) were analyzed as the discovery and replication cohorts, respectively. Genome-wide methylation data on 27 578 CpG sites in 14 475 genes were obtained on DNA from peripheral blood leukocytes using the Illumina HumanMethylation27K Beadchip in both cohorts. We identified 15 sites significantly associated with current smoking, 2 sites associated with cumulative smoke exposure, and, within the subset of former smokers, 3 sites associated with time since quitting cigarettes. Two loci, factor II receptor-like 3 (F2RL3) and G-protein-coupled receptor 15 (GPR15), were significantly associated in all three analyses and were validated by pyrosequencing. These findings (i) identify a novel locus (GPR15) associated with cigarette smoking and (ii) suggest the existence of dynamic, site-specific methylation changes in response to smoking which may contribute to the extended risks associated with cigarette smoking that persist after cessation.
doi:10.1093/hmg/dds135
PMCID: PMC3373248  PMID: 22492999
5.  A genome-wide association study of COPD identifies a susceptibility locus on chromosome 19q13 
Human Molecular Genetics  2011;21(4):947-957.
The genetic risk factors for chronic obstructive pulmonary disease (COPD) are still largely unknown. To date, genome-wide association studies (GWASs) of limited size have identified several novel risk loci for COPD at CHRNA3/CHRNA5/IREB2, HHIP and FAM13A; additional loci may be identified through larger studies. We performed a GWAS using a total of 3499 cases and 1922 control subjects from four cohorts: the Evaluation of COPD Longitudinally to Identify Predictive Surrogate Endpoints (ECLIPSE); the Normative Aging Study (NAS) and National Emphysema Treatment Trial (NETT); Bergen, Norway (GenKOLS); and the COPDGene study. Genotyping was performed on Illumina platforms with additional markers imputed using 1000 Genomes data; results were summarized using fixed-effect meta-analysis. We identified a new genome-wide significant locus on chromosome 19q13 (rs7937, OR = 0.74, P = 2.9 × 10−9). Genotyping this single nucleotide polymorphism (SNP) and another nearby SNP in linkage disequilibrium (rs2604894) in 2859 subjects from the family-based International COPD Genetics Network study (ICGN) demonstrated supportive evidence for association for COPD (P = 0.28 and 0.11 for rs7937 and rs2604894), pre-bronchodilator FEV1 (P = 0.08 and 0.04) and severe (GOLD 3&4) COPD (P = 0.09 and 0.017). This region includes RAB4B, EGLN2, MIA and CYP2A6, and has previously been identified in association with cigarette smoking behavior.
doi:10.1093/hmg/ddr524
PMCID: PMC3298111  PMID: 22080838
6.  Polymorphisms in Surfactant Protein–D Are Associated with Chronic Obstructive Pulmonary Disease 
Chronic obstructive pulmonary disease (COPD) is characterized by alveolar destruction and abnormal inflammatory responses to noxious stimuli. Surfactant protein–D (SFTPD) is immunomodulatory and essential to host defense. We hypothesized that polymorphisms in SFTPD could influence the susceptibility to COPD. We genotyped six single-nucleotide polymorphisms (SNPs) in surfactant protein D in 389 patients with COPD in the National Emphysema Treatment Trial (NETT) and 472 smoking control subjects from the Normative Aging Study (NAS). Case-control association analysis was performed using Cochran–Armitage trend tests and multivariate logistic regression. The replication of significant associations was attempted in the Boston Early-Onset COPD Study, the Evaluation of COPD Longitudinally to Identify Predictive Surrogate Endpoints (ECLIPSE) Study, and the Bergen Cohort. We also correlated SFTPD genotypes with serum concentrations of surfactant protein–D (SP-D) in the ECLIPSE Study. In the NETT–NAS case-control analysis, four SFTPD SNPs were associated with susceptibility to COPD: rs2245121 (P = 0.01), rs911887 (P = 0.006), rs6413520 (P = 0.004), and rs721917 (P = 0.006). In the family-based analysis of the Boston Early-Onset COPD Study, rs911887 was associated with prebronchodilator and postbronchodilator FEV1 (P = 0.003 and P = 0.02, respectively). An intronic SNP in SFTPD, rs7078012, was associated with COPD in the ECLIPSE Study and the Bergen Cohort. Multiple SFTPD SNPs were associated with serum SP-D concentrations in the ECLIPSE Study. We demonstrated an association of polymorphisms in SFTPD with COPD in multiple populations. We demonstrated a correlation between SFTPD SNPs and SP-D protein concentrations. The SNPs associated with COPD and SP-D concentrations differed, suggesting distinct genetic influences on susceptibility to COPD and SP-D concentrations.
doi:10.1165/rcmb.2009-0360OC
PMCID: PMC3095932  PMID: 20448057
COPD; surfactant protein–D; single-nucleotide polymorphisms; genetics
7.  Multistudy Fine Mapping of Chromosome 2q Identifies XRCC5 as a Chronic Obstructive Pulmonary Disease Susceptibility Gene 
Rationale: Several family-based studies have identified genetic linkage for lung function and airflow obstruction to chromosome 2q.
Objectives: We hypothesized that merging results of high-resolution single nucleotide polymorphism (SNP) mapping in four separate populations would lead to the identification of chronic obstructive pulmonary disease (COPD) susceptibility genes on chromosome 2q.
Methods: Within the chromosome 2q linkage region, 2,843 SNPs were genotyped in 806 COPD cases and 779 control subjects from Norway, and 2,484 SNPs were genotyped in 309 patients with severe COPD from the National Emphysema Treatment Trial and 330 community control subjects. Significant associations from the combined results across the two case-control studies were followed up in 1,839 individuals from 603 families from the International COPD Genetics Network (ICGN) and in 949 individuals from 127 families in the Boston Early-Onset COPD Study.
Measurements and Main Results: Merging the results of the two case-control analyses, 14 of the 790 overlapping SNPs had a combined P < 0.01. Two of these 14 SNPs were consistently associated with COPD in the ICGN families. The association with one SNP, located in the gene XRCC5, was replicated in the Boston Early-Onset COPD Study, with a combined P = 2.51 × 10−5 across the four studies, which remains significant when adjusted for multiple testing (P = 0.02). Genotype imputation confirmed the association with SNPs in XRCC5.
Conclusions: By combining data from COPD genetic association studies conducted in four independent patient samples, we have identified XRCC5, an ATP-dependent DNA helicase, as a potential COPD susceptibility gene.
doi:10.1164/rccm.200910-1586OC
PMCID: PMC2937234  PMID: 20463177
emphysema; genetic linkage; metaanalysis; single nucleotide polymorphism
8.  Variants in FAM13A are associated with chronic obstructive pulmonary disease 
Nature genetics  2010;42(3):200-202.
Substantial evidence suggests that there is genetic susceptibility to chronic obstructive pulmonary disease (COPD). To identify common genetic risk variants, we performed a genome-wide association study in 2940 cases and 1380 smoking controls with normal lung function. We demonstrate a novel susceptibility locus at 4q22.1 in FAM13A (rs7671167, OR=0.76, P=8.6×10−8) and provide evidence of replication in one case-control and two family-based cohorts (for all studies, combined P=1.2×10−11).
doi:10.1038/ng.535
PMCID: PMC2828499  PMID: 20173748

Results 1-8 (8)