Search tips
Search criteria

Results 1-3 (3)

Clipboard (0)
more »
Year of Publication
Document Types
1.  Peripheral blood gene expression profiles in COPD subjects 
To identify non-invasive gene expression markers for chronic obstructive pulmonary disease (COPD), we performed genome-wide expression profiling of peripheral blood samples from 12 subjects with significant airflow obstruction and an equal number of non-obstructed controls. RNA was isolated from Peripheral Blood Mononuclear Cells (PBMCs) and gene expression was assessed using Affymetrix U133 Plus 2.0 arrays.
Tests for gene expression changes that discriminate between COPD cases (FEV1< 70% predicted, FEV1/FVC < 0.7) and controls (FEV1> 80% predicted, FEV1/FVC > 0.7) were performed using Significance Analysis of Microarrays (SAM) and Bayesian Analysis of Differential Gene Expression (BADGE). Using either test at high stringency (SAM median FDR = 0 or BADGE p < 0.01) we identified differential expression for 45 known genes. Correlation of gene expression with lung function measurements (FEV1 & FEV1/FVC), using both Pearson and Spearman correlation coefficients (p < 0.05), identified a set of 86 genes. A total of 16 markers showed evidence of significant correlation (p < 0.05) with quantitative traits and differential expression between cases and controls. We further compared our peripheral gene expression markers with those we previously identified from lung tissue of the same cohort. Two genes, RP9and NAPE-PLD, were identified as decreased in COPD cases compared to controls in both lung tissue and blood. These results contribute to our understanding of gene expression changes in the peripheral blood of patients with COPD and may provide insight into potential mechanisms involved in the disease.
PMCID: PMC3164605  PMID: 21884629
Microarray; Biomarkers; PBMC
2.  Molecular Biomarkers for Quantitative and Discrete COPD Phenotypes 
Chronic obstructive pulmonary disease (COPD) is an inflammatory lung disorder with complex pathological features and largely unknown etiology. The identification of biomarkers for this disease could aid the development of methods to facilitate earlier diagnosis, the classification of disease subtypes, and provide a means to define therapeutic response. To identify gene expression biomarkers, we completed expression profiling of RNA derived from the lung tissue of 56 subjects with varying degrees of airflow obstruction using the Affymetrix U133 Plus 2.0 array. We applied multiple, independent analytical methods to define biomarkers for either discrete or quantitative disease phenotypes. Analysis of differential expression between cases (n = 15) and controls (n = 18) identified a set of 65 discrete biomarkers. Correlation of gene expression with quantitative measures of airflow obstruction (FEV1%predicted or FEV1/FVC) identified a set of 220 biomarkers. Biomarker genes were enriched in functions related to DNA binding and regulation of transcription. We used this group of biomarkers to predict disease in an unrelated data set, generated from patients with severe emphysema, with 97% accuracy. Our data contribute to the understanding of gene expression changes occurring in the lung tissue of patients with obstructive lung disease and provide additional insight into potential mechanisms involved in the disease process. Furthermore, we present the first gene expression biomarker for COPD validated in an independent data set.
PMCID: PMC2645534  PMID: 18849563
microarray; gene expression; emphysema; lung function

Results 1-3 (3)