PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (49)
 

Clipboard (0)
None
Year of Publication
more »
Document Types
1.  Fetal lung and placental methylation is associated with in utero nicotine exposure 
Epigenetics  2014;9(11):1473-1484.
In utero smoke exposure has been shown to have detrimental effects on lung function and to be associated with persistent wheezing and asthma in children. One potential mechanism of IUS effects could be alterations in DNA methylation, which may have life-long implications. The goal of this study was to examine the association between DNA methylation and nicotine exposure in fetal lung and placental tissue in early development; nicotine exposure in this analysis represents a likely surrogate for in-utero smoke. We performed an epigenome-wide analysis of DNA methylation in fetal lung tissue (n = 85, 41 smoke exposed (48%), 44 controls) and the corresponding placental tissue samples (n = 80, 39 smoke exposed (49%), 41 controls) using the Illumina HumanMethylation450 BeadChip array. Differential methylation analyses were conducted to evaluate the variation associated with nicotine exposure. The most significant CpG sites in the fetal lung analysis mapped to the PKP3 (P = 2.94 × 10−03), ANKRD33B (P = 3.12 × 10−03), CNTD2 (P = 4.9 × 10−03) and DPP10 (P = 5.43 × 10−03) genes. In the placental methylome, the most significant CpG sites mapped to the GTF2H2C and GTF2H2D genes (P = 2.87 × 10−06 − 3.48 × 10−05). One hundred and one unique CpG sites with P-values < 0.05 were concordant between lung and placental tissue analyses. Gene Set Enrichment Analysis demonstrated enrichment of specific disorders, such as asthma and immune disorders. Our findings demonstrate an association between in utero nicotine exposure and variable DNA methylation in fetal lung and placental tissues, suggesting a role for DNA methylation variation in the fetal origins of chronic diseases.
doi:10.4161/15592294.2014.971593
PMCID: PMC4623268  PMID: 25482056
asthma; developmental biology; epigenomics; nicotine and DNA methylation; smoking
2.  Determinants of airflow obstruction in severe alpha‐1‐antitrypsin deficiency 
Thorax  2007;62(9):806-813.
Background
Severe α1‐antitrypsin (AAT) deficiency is an autosomal recessive genetic condition associated with an increased but variable risk for chronic obstructive pulmonary disease (COPD). A study was undertaken to assess the impact of chronic bronchitis, pneumonia, asthma and sex on the development of COPD in individuals with severe AAT deficiency.
Methods
The AAT Genetic Modifier Study is a multicentre family‐based cohort study designed to study the genetic and epidemiological determinants of COPD in AAT deficiency. 378 individuals (age range 33–80 years), confirmed to be homozygous for the SERPINA1 Z mutation, were included in the analyses. The primary outcomes of interest were a quantitative outcome, forced expiratory volume in 1 s (FEV1) percentage predicted, and a qualitative outcome, severe airflow obstruction (FEV1 <50% predicted).
Results
In multivariate analysis of the overall cohort, cigarette smoking, sex, asthma, chronic bronchitis and pneumonia were risk factors for reduced FEV1 percentage predicted and severe airflow obstruction (p<0.01). Index cases had lower FEV1 values, higher smoking histories and more reports of adult asthma, pneumonia and asthma before age 16 than non‐index cases (p<0.01). Men had lower pre‐ and post‐bronchodilator FEV1 percentage predicted than women (p<0.0001); the lowest FEV1 values were observed in men reporting a history of childhood asthma (26.9%). This trend for more severe obstruction in men remained when index and non‐index groups were examined separately, with men representing the majority of non‐index individuals with airflow obstruction (71%). Chronic bronchitis (OR 3.8, CI 1.8 to 12.0) and a physician's report of asthma (OR 4.2, CI 1.4 to 13.1) were predictors of severe airflow obstruction in multivariate analysis of non‐index men but not women.
Conclusion
In individuals with severe AAT deficiency, sex, asthma, chronic bronchitis and pneumonia are risk factors for severe COPD, in addition to cigarette smoking. These results suggest that, in subjects severely deficient in AAT, men, individuals with symptoms of chronic bronchitis and/or a past diagnosis of asthma or pneumonia may benefit from closer monitoring and potentially earlier treatment.
doi:10.1136/thx.2006.075846
PMCID: PMC2117297  PMID: 17389752
3.  Clinical and Radiologic Disease in Smokers With Normal Spirometry 
JAMA internal medicine  2015;175(9):1539-1549.
IMPORTANCE
Airflow obstruction on spirometry is universally used to define chronic obstructive pulmonary disease (COPD), and current or former smokers without airflow obstruction may assume that they are disease free.
OBJECTIVE
To identify clinical and radiologic evidence of smoking-related disease in a cohort of current and former smokers who did not meet spirometric criteria for COPD, for whom we adopted the discarded label of Global Initiative for Obstructive Lung Disease (GOLD) 0.
DESIGN, SETTING, AND PARTICIPANTS
Individuals from the Genetic Epidemiology of COPD (COPDGene) cross-sectional observational study completed spirometry, chest computed tomography (CT) scans, a 6-minute walk, and questionnaires. Participants were recruited from local communities at 21 sites across the United States. The GOLD 0 group (n = 4388) (ratio of forced expiratory volume in the first second of expiration [FEV1] to forced vital capacity >0.7 and FEV1 ≥80% predicted) from the COPDGene study was compared with a GOLD 1 group (n = 794), COPD groups (n = 3690), and a group of never smokers (n = 108). Recruitment began in January 2008 and ended in July 2011.
MAIN OUTCOMES AND MEASURES
Physical function impairments, respiratory symptoms, CT abnormalities, use of respiratory medications, and reduced respiratory-specific quality of life.
RESULTS
One or more respiratory-related impairments were found in 54.1% (2375 of 4388) of the GOLD 0 group. The GOLD 0 group had worse quality of life (mean [SD] St George’s Respiratory Questionnaire total score, 17.0 [18.0] vs 3.8 [6.8] for the never smokers; P < .001) and a lower 6-minute walk distance, and 42.3% (127 of 300) of the GOLD 0 group had CT evidence of emphysema or airway thickening. The FEV1 percent predicted distribution and mean for the GOLD 0 group were lower but still within the normal range for the population. Current smoking was associated with more respiratory symptoms, but former smokers had greater emphysema and gas trapping. Advancing age was associated with smoking cessation and with more CT findings of disease. Individuals with respiratory impairments were more likely to use respiratory medications, and the use of these medications was associated with worse disease.
CONCLUSIONS AND RELEVANCE
Lung disease and impairments were common in smokers without spirometric COPD. Based on these results, we project that there are 35 million current and former smokers older than 55 years in the United States who may have unrecognized disease or impairment. The effect of chronic smoking on the lungs and the individual is substantially underestimated when using spirometry alone.
doi:10.1001/jamainternmed.2015.2735
PMCID: PMC4564354  PMID: 26098755
4.  Association of cigarette smoking and CRP levels with DNA methylation in α-1 antitrypsin deficiency 
Epigenetics  2012;7(7):720-728.
Alpha-1 antitrypsin (AAT) deficiency and tobacco smoking are confirmed risk factors for Chronic Obstructive Pulmonary Disease. We hypothesized that variable DNA methylation would be associated with smoking and inflammation, as reflected by the level of C-Reactive Protein (CRP) in AAT-deficient subjects. Methylation levels of 1,411 autosomal CpG sites from the Illumina GoldenGate Methylation Cancer Panel I were analyzed in 316 subjects. Associations of five smoking behaviors and CRP levels with individual CpG sites and average methylation levels were assessed using non-parametric testing, linear regression and linear mixed effect models, with and without adjustment for age and gender. Univariate linear regression analysis revealed that methylation levels of 16 CpG sites significantly associated with ever-smoking status. A CpG site in the TGFBI gene was the only site associated with ever-smoking after adjustment for age and gender. No highly significant associations existed between age at smoking initiation, pack-years smoked, duration of smoking, and time since quitting smoking as predictors of individual CpG site methylation levels. However, ever-smoking and younger age at smoking initiation associated with lower methylation level averaged across all sites. DNA methylation at CpG sites in the RUNX3, JAK3 and KRT1 genes associated with CRP levels. The most significantly associated CpG sites with gender and age mapped to the CASP6 and FZD9 genes, respectively. In summary, this study identified multiple potential candidate CpG sites associated with ever-smoking and CRP level in AAT-deficient subjects. Phenotypic variability in Mendelian diseases may be due to epigenetic factors.
doi:10.4161/epi.20319
PMCID: PMC3414392  PMID: 22617718
68kDa (TGFBI); C-Reactive Protein (CRP); Chronic Obstructive Pulmonary Disease (COPD); Illumina GoldenGate Methylation Cancer Panel I; alpha-1 antitrypsin (AAT) deficiency; beta-induced; methylation; smoking behaviors; transforming growth factor
5.  Variable DNA Methylation Is Associated with Chronic Obstructive Pulmonary Disease and Lung Function 
Rationale: Chronic obstructive pulmonary disease (COPD) is associated with local (lung) and systemic (blood) inflammation and manifestations. DNA methylation is an important regulator of gene transcription, and global and specific gene methylation marks may vary with cigarette smoke exposure.
Objectives: To perform a comprehensive assessment of methylation marks in DNA from subjects well phenotyped for nonneoplastic lung disease.
Methods: We conducted array-based methylation screens, using a test-replication approach, in two family-based cohorts (n = 1,085 and 369 subjects).
Measurements and Main Results: We observed 349 CpG sites significantly associated with the presence and severity of COPD in both cohorts. Seventy percent of the associated CpG sites were outside of CpG islands, with the majority of CpG sites relatively hypomethylated. Gene ontology analysis based on these 349 CpGs (330 genes) suggested the involvement of a number of genes responsible for immune and inflammatory system pathways, responses to stress and external stimuli, as well as wound healing and coagulation cascades. Interestingly, our observations include significant, replicable associations between SERPINA1 hypomethylation and COPD and lower average lung function phenotypes (combined P values: COPD, 1.5 × 10−23; FEV1/FVC, 1.5 × 10−35; FEV1, 2.2 × 10−40).
Conclusions: Genetic and epigenetic pathways may both contribute to COPD. Many of the top associations between COPD and DNA methylation occur in biologically plausible pathways. This large-scale analysis suggests that DNA methylation may be a biomarker of COPD and may highlight new pathways of COPD pathogenesis.
doi:10.1164/rccm.201108-1382OC
PMCID: PMC3297093  PMID: 22161163
chronic obstructive pulmonary disease; epigenetics; DNA methylation; smoking
6.  Early-Onset Chronic Obstructive Pulmonary Disease Is Associated with Female Sex, Maternal Factors, and African American Race in the COPDGene Study 
Rationale: The characterization of young adults who develop late-onset diseases may augment the detection of novel genes and promote new pathogenic insights.
Methods: We analyzed data from 2,500 individuals of African and European ancestry in the COPDGene Study. Subjects with severe, early-onset chronic obstructive pulmonary disease (COPD) (n = 70, age < 55 yr, FEV1 < 50% predicted) were compared with older subjects with COPD (n = 306, age > 64 yr, FEV1 < 50% predicted).
Measurements and Main Results: Subjects with severe, early-onset COPD were predominantly females (66%), P = 0.0004. Proportionally, early-onset COPD was seen in 42% (25 of 59) of African Americans versus 14% (45 of 317) of non-Hispanic whites, P < 0.0001. Other risk factors included current smoking (56 vs. 17%, P < 0.0001) and self-report of asthma (39 vs. 25%, P = 0.008). Maternal smoking (70 vs. 44%, P = 0.0001) and maternal COPD (23 vs. 12%, P = 0.03) were reported more commonly in subjects with early-onset COPD. Multivariable regression analysis found association with African American race, odds ratio (OR), 7.5 (95% confidence interval [CI], 2.3–24; P = 0.0007); maternal COPD, OR, 4.7 (95% CI, 1.3–17; P = 0.02); female sex, OR, 3.1 (95% CI, 1.1–8.7; P = 0.03); and each pack-year of smoking, OR, 0.98 (95% CI, 0.96–1.0; P = 0.03).
Conclusions: These observations support the hypothesis that severe, early-onset COPD is prevalent in females and is influenced by maternal factors. Future genetic studies should evaluate (1) gene-by-sex interactions to address sex-specific genetic contributions and (2) gene-by-race interactions.
doi:10.1164/rccm.201011-1928OC
PMCID: PMC3175544  PMID: 21562134
chronic obstructive pulmonary disease; female; African Americans
7.  Genome-Wide Association Analysis of Body Mass in Chronic Obstructive Pulmonary Disease 
Cachexia, whether assessed by body mass index (BMI) or fat-free mass index (FFMI), affects a significant proportion of patients with chronic obstructive pulmonary disease (COPD), and is an independent risk factor for increased mortality, increased emphysema, and more severe airflow obstruction. The variable development of cachexia among patients with COPD suggests a role for genetic susceptibility. The objective of the present study was to determine genetic susceptibility loci involved in the development of low BMI and FFMI in subjects with COPD. A genome-wide association study (GWAS) of BMI was conducted in three independent cohorts of European descent with Global Initiative for Chronic Obstructive Lung Disease stage II or higher COPD: Evaluation of COPD Longitudinally to Identify Predictive Surrogate End-Points (ECLIPSE; n = 1,734); Norway-Bergen cohort (n = 851); and a subset of subjects from the National Emphysema Treatment Trial (NETT; n = 365). A genome-wide association of FFMI was conducted in two of the cohorts (ECLIPSE and Norway). In the combined analyses, a significant association was found between rs8050136, located in the first intron of the fat mass and obesity–associated (FTO) gene, and BMI (P = 4.97 × 10−7) and FFMI (P = 1.19 × 10−7). We replicated the association in a fourth, independent cohort consisting of 502 subjects with COPD from COPDGene (P = 6 × 10−3). Within the largest contributing cohort of our analysis, lung function, as assessed by forced expiratory volume at 1 second, varied significantly by FTO genotype. Our analysis suggests a potential role for the FTO locus in the determination of anthropomorphic measures associated with COPD.
doi:10.1165/rcmb.2010-0294OC
PMCID: PMC3266061  PMID: 21037115
chronic obstructive pulmonary disease genetics; chronic obstructive pulmonary disease epidemiology; chronic obstructive pulmonary disease metabolism; genome-wide association study
8.  A Comparative Study of Tests for Homogeneity of Variances with Application to DNA Methylation Data 
PLoS ONE  2015;10(12):e0145295.
Variable DNA methylation has been associated with cancers and complex diseases. Researchers have identified many DNA methylation markers that have different mean methylation levels between diseased subjects and normal subjects. Recently, researchers found that DNA methylation markers with different variabilities between subject groups could also have biological meaning. In this article, we aimed to help researchers choose the right test of equal variance in DNA methylation data analysis. We performed systematic simulation studies and a real data analysis to compare the performances of 7 equal-variance tests, including 2 tests recently proposed in the DNA methylation analysis literature. Our results showed that the Brown-Forsythe test and trimmed-mean-based Levene's test had good performance in testing for equality of variance in our simulation studies and real data analyses. Our results also showed that outlier profiles could be biologically very important.
doi:10.1371/journal.pone.0145295
PMCID: PMC4684215  PMID: 26683022
9.  A genome-wide association study identifies risk loci for spirometric measures among smokers of European and African ancestry 
BMC Genetics  2015;16:138.
Background
Pulmonary function decline is a major contributor to morbidity and mortality among smokers. Post bronchodilator FEV1 and FEV1/FVC ratio are considered the standard assessment of airflow obstruction. We performed a genome-wide association study (GWAS) in 9919 current and former smokers in the COPDGene study (6659 non-Hispanic Whites [NHW] and 3260 African Americans [AA]) to identify associations with spirometric measures (post-bronchodilator FEV1 and FEV1/FVC). We also conducted meta-analysis of FEV1 and FEV1/FVC GWAS in the COPDGene, ECLIPSE, and GenKOLS cohorts (total n = 13,532).
Results
Among NHW in the COPDGene cohort, both measures of pulmonary function were significantly associated with SNPs at the 15q25 locus [containing CHRNA3/5, AGPHD1, IREB2, CHRNB4] (lowest p-value = 2.17 × 10−11), and FEV1/FVC was associated with a genomic region on chromosome 4 [upstream of HHIP] (lowest p-value = 5.94 × 10−10); both regions have been previously associated with COPD. For the meta-analysis, in addition to confirming associations to the regions near CHRNA3/5 and HHIP, genome-wide significant associations were identified for FEV1 on chromosome 1 [TGFB2] (p-value = 8.99 × 10−9), 9 [DBH] (p-value = 9.69 × 10−9) and 19 [CYP2A6/7] (p-value = 3.49 × 10−8) and for FEV1/FVC on chromosome 1 [TGFB2] (p-value = 8.99 × 10−9), 4 [FAM13A] (p-value = 3.88 × 10−12), 11 [MMP3/12] (p-value = 3.29 × 10−10) and 14 [RIN3] (p-value = 5.64 × 10−9).
Conclusions
In a large genome-wide association study of lung function in smokers, we found genome-wide significant associations at several previously described loci with lung function or COPD. We additionally identified a novel genome-wide significant locus with FEV1 on chromosome 9 [DBH] in a meta-analysis of three study populations.
Electronic supplementary material
The online version of this article (doi:10.1186/s12863-015-0299-4) contains supplementary material, which is available to authorized users.
doi:10.1186/s12863-015-0299-4
PMCID: PMC4668640  PMID: 26634245
Chronic obstructive pulmonary disease; DBH; FEV1; FEV1/FVC; Genome-wide association study; Spirometry
10.  A novel method for detecting association between DNA methylation and diseases using spatial information 
Genetic epidemiology  2014;38(8):714-721.
DNA methylation may represent an important contributor to the missing heritability described in complex trait genetics. However, technology to measure DNA methylation has outpaced statistical methods for analysis. Taking advantage of the recent finding that methylated sites cluster together, we propose a Spatial Clustering Method (SCM) method to detect differentially methylated regions in the genome in case and control studies using spatial location information.
This new method compares the distribution of distances in cases and controls between DNA methylation marks in the genomic region of interest. A statistic is computed based on these distances. Proper type I error rate is maintained and statistical significance is evaluated using permutation test.
The effectiveness of the SCM we propose is evaluated by a simulation study. By simulating a simple disease model, we demonstrate that SCM has good power to detect differentially methylated regions associated with the disease. Finally, we applied the SCM to an exploratory analysis of chromosome 14 from a colorectal cancer data set and identified statistically significant genomic regions. Identification of these regions should lead to a better understanding of methylated sites and their contribution to disease. The SCM can be used as a reliable statistical method for the identification of differentially methylated regions associated with disease states in exploratory epigenetic analyses.
doi:10.1002/gepi.21851
PMCID: PMC4236268  PMID: 25250875
DNA methylation; spatial analysis; genetic analysis; Genome Wide Association Test (GWAS); differentially methylated regions (DMR)
12.  PHENOTYPIC AND GENETIC HETEROGENEITY AMONG SUBJECTS WITH MILD AIRFLOW OBSTRUCTION IN COPDGENE 
Respiratory medicine  2014;108(10):1469-1480.
Background
Chronic obstructive pulmonary disease (COPD) is characterized by marked phenotypic heterogeneity. Most previous studies have focused on COPD subjects with FEV1 < 80% predicted. We investigated the clinical and genetic heterogeneity in subjects with mild airflow limitation in spirometry grade 1 defined by the Global Initiative for chronic Obstructive Lung Disease (GOLD 1).
Methods
Data from current and former smokers participating in the COPDGene Study (NCT00608764) were analyzed. K-means clustering was performed to explore subtypes within 794 GOLD 1 subjects. For all subjects with GOLD 1 and with each cluster, a genome-wide association study and candidate gene testing were performed using smokers with normal lung function as a control group. Combinations of COPD genome-wide significant single nucleotide polymorphisms (SNPs) were tested for association with FEV1 (% predicted) in GOLD 1 and in a combined group of GOLD1 and smoking control subjects.
Results
K-means clustering of GOLD 1 subjects identified putative “near-normal”, “airway-predominant”, “emphysema-predominant” and “lowest FEV1 % predicted” subtypes. In non-Hispanic whites, the only SNP nominally associated with GOLD 1 status relative to smoking controls was rs7671167 (FAM13A) in logistic regression models with adjustment for age, sex, pack-years of smoking, and genetic ancestry. The emphysema-predominant GOLD 1 cluster was nominally associated with rs7671167 (FAM13A) and rs161976 (BICD1). The lowest FEV1 % predicted cluster was nominally associated with rs1980057 (HHIP) and rs1051730 (CHRNA3). Combinations of COPD genome-wide significant SNPs were associated with FEV1 (% predicted) in a combined group of GOLD 1 and smoking control subjects.
Conclusions
Our results indicate that GOLD 1 subjects show substantial clinical heterogeneity, which is at least partially related to genetic heterogeneity.
doi:10.1016/j.rmed.2014.07.018
PMCID: PMC4253548  PMID: 25154699
pulmonary disease; chronic obstructive; population characteristics; cluster analysis; genetic association
13.  IL10 Polymorphisms Are Associated with Airflow Obstruction in Severe α1-Antitrypsin Deficiency 
Severe α1-antitrypsin (AAT) deficiency is a proven genetic risk factor for chronic obstructive pulmonary disease (COPD), especially in individuals who smoke. There is marked variability in the development of lung disease in individuals homozygous (PI ZZ) for this autosomal recessive condition, suggesting that modifier genes could be important. We hypothesized that genetic determinants of obstructive lung disease may be modifiers of airflow obstruction in individuals with severe AAT deficiency. To identify modifier genes, we performed family-based association analyses for 10 genes previously associated with asthma and/or COPD, including IL10, TNF, GSTP1, NOS1, NOS3, SERPINA3, SERPINE2, SFTPB, TGFB1, and EPHX1. All analyses were performed in a cohort of 378 PI ZZ individuals from 167 families. Quantitative spirometric phenotypes included forced expiratory volume in one second (FEV1) and the ratio of FEV1/forced vital capacity (FVC). A qualitative phenotype of moderate-to-severe COPD was defined for individuals with FEV1 ⩽ 50 percent predicted. Six of 11 single-nucleotide polymorphisms (SNPs) in IL10 (P = 0.0005–0.05) and 3 of 5 SNPs in TNF (P = 0.01–0.05) were associated with FEV1 and/or FEV1/FVC. IL10 SNPs also demonstrated association with the qualitative COPD phenotype. When phenotypes of individuals with a physician's diagnosis of asthma were excluded, IL10 SNPs remained significantly associated, suggesting that the association with airflow obstruction was independent of an association with asthma. Haplotype analysis of IL10 SNPs suggested the strongest association with IL10 promoter SNPs. IL10 is likely an important modifier gene for the development of COPD in individuals with severe AAT deficiency.
doi:10.1165/rcmb.2007-0107OC
PMCID: PMC2176135  PMID: 17690329
chronic obstructive pulmonary disease; genetic modifiers; interleukin 10; family-based association analysis
14.  Genetic Determinants of Emphysema Distribution in the National Emphysema Treatment Trial 
Rationale: Computed tomography (CT) scanning of the lung may reduce phenotypic heterogeneity in defining subjects with chronic obstructive pulmonary disease (COPD), and allow identification of genetic determinants of emphysema severity and distribution.
Objectives: We sought to identify genes associated with CT scan distribution of emphysema in individuals without α1-antitrypsin deficiency but with severe COPD.
Methods: We evaluated baseline CT densitometry phenotypes in 282 individuals with emphysema enrolled in the Genetics Ancillary Study of the National Emphysema Treatment Trial, and used regression models to identify genetic variants associated with emphysema distribution.
Measurements and Main Results: Emphysema distribution was assessed by two methods—assessment by radiologists and by computerized density mask quantitation, using a threshold of −950 Hounsfield units. A total of 77 polymorphisms in 20 candidate genes were analyzed for association with distribution of emphysema. GSTP1, EPHX1, and MMP1 polymorphisms were associated with the densitometric, apical-predominant distribution of emphysema (p value range = 0.001–0.050). When an apical-predominant phenotype was defined by the radiologist scoring method, GSTP1 and EPHX1 single-nucleotide polymorphisms were found to be significantly associated. In a case–control analysis of COPD susceptibility limited to cases with densitometric upper-lobe–predominant cases, the EPHX1 His139Arg single-nucleotide polymorphism was associated with COPD (p = 0.005).
Conclusions: Apical and basal emphysematous destruction appears to be influenced by different genes. Polymorphisms in the xenobiotic enzymes, GSTP1 and EPHX1, are associated with apical-predominant emphysema. Altered detoxification of cigarette smoke metabolites may contribute to emphysema distribution, and these findings may lead to further insight into genetic determinants of emphysema.
doi:10.1164/rccm.200612-1797OC
PMCID: PMC2049064  PMID: 17363767
COPD; genetics; association analysis; computed tomography; emphysema
15.  Concordance of Genotypes in Pre– and Post–Lung Transplantation DNA Samples 
Genetic epidemiology studies of end-stage lung disease are potentially hindered by low numbers of participants due to early death of patients from the underlying disease, or due to exclusion from studies after patients have had lung transplants, because of concern about bias of genotype data due to chimerism. The number of participants enrolled in genetic studies of end-stage lung disease could be increased by including those individuals who have undergone lung transplant. We hypothesized that individuals who have had lung transplants can be included in genetic epidemiology studies that use single nucleotide polymorphism and short tandem repeat marker data, without confounding due to chimerism. Ten probands with severe, early-onset chronic obstructive pulmonary disease were included in this analysis. Pre– and post–lung transplant DNA samples were used in the investigation of concordance of genotype results for 12 short tandem repeat markers and 23 single nucleotide polymorphisms. Concordance was observed for all genotypes before and after lung transplant. We conclude that the risk of biasing genetic epidemiology studies due to donor lung–related DNA microchimerism is low, and that the inclusion of post–lung transplantation participants will allow for larger genetic epidemiology studies of individuals with end-stage lung disease.
doi:10.1165/rcmb.2005-0142OC
PMCID: PMC2715347  PMID: 15994430
genetic epidemiology; lung; chimerism; transplantation
16.  Cluster Analysis in the COPDGene Study Identifies Subtypes of Smokers with Distinct Patterns of Airway Disease and Emphysema 
Thorax  2014;69(5):416-423.
Background
There is notable heterogeneity in the clinical presentation of patients with COPD. To characterize this heterogeneity, we sought to identify subgroups of smokers by applying cluster analysis to data from the COPDGene Study.
Methods
We applied a clustering method, k-means, to data from 10,192 smokers in the COPDGene Study. After splitting the sample into a training and validation set, we evaluated three sets of input features across a range of k (user-specified number of clusters). Stable solutions were tested for association with four COPD-related measures and five genetic variants previously associated with COPD at genome-wide significance. The results were confirmed in the validation set.
Findings
We identified four clusters that can be characterized as 1) relatively resistant smokers (i.e. no/mild obstruction and minimal emphysema despite heavy smoking), 2) mild upper zone emphysema predominant, 3) airway disease predominant, and 4) severe emphysema. All clusters are strongly associated with COPD-related clinical characteristics, including exacerbations and dyspnea (p<0.001). We found strong genetic associations between the mild upper zone emphysema group and rs1980057 near HHIP, and between the severe emphysema group and rs8034191 in the chromosome 15q region (p<0.001). All significant associations were replicated at p<0.05 in the validation sample (12/12 associations with clinical measures and 2/2 genetic associations).
Interpretation
Cluster analysis identifies four subgroups of smokers that show robust associations with clinical characteristics of COPD and known COPD-associated genetic variants.
doi:10.1136/thoraxjnl-2013-203601
PMCID: PMC4004338  PMID: 24563194
17.  Menthol cigarette smoking in the COPDGene cohort: Relationship with COPD, comorbidities and CT metrics 
Respirology (Carlton, Vic.)  2014;20(1):108-114.
Background and objective
Menthol cigarettes contain higher levels of menthol to produce a characteristic mint flavour and cooling sensation. Compared with non-menthol cigarettes, little information exists on the effects of menthol cigarette smoking on clinical and radiological characteristics of chronic obstructive pulmonary disease (COPD). The main objective of the present study was to examine associations between menthol cigarette use and the risk of COPD and its characteristics, such as exacerbation, comorbidities and computed tomography (CT) abnormalities.
Methods
We analysed the data from 5699 current smokers in the COPDGene cohort to evaluate whether lung function, comorbidities, exacerbations and CT parameters were different between menthol and non-menthol cigarette smokers.
Results
There were 3758 (65.9%) who reported use of menthol cigarettes. Multivariable regression analysis revealed that younger age, female gender and African-American ethnicity were significantly associated with smoking of menthol cigarettes. No significant associations were found between menthol cigarette use and COPD, major CT findings or comorbidities, such as cardiovascular disease, congestive heart failure, peripheral vascular disease, cerebrovascular disease, hypertension, diabetes, gastro-oesophageal reflux and osteoporosis; however, menthol cigarette smokers were more likely to experience a severe exacerbation of COPD during longitudinal follow-up (odds ratio 1.29; 95% confidence interval: 1.01–1.54) compared with the non-menthol cigarette smokers.
Conclusions
These results confirm that menthol cigarettes are not safer than traditional cigarettes and suggest that menthol cigarette smokers may have more frequent severe exacerbations than non-menthol cigarette smokers.
doi:10.1111/resp.12421
PMCID: PMC4415502  PMID: 25328036
chronic obstructive pulmonary disease; computed tomography; exacerbation; menthol; smoking
18.  Risk loci for chronic obstructive pulmonary disease: a genome-wide association study and meta-analysis 
The Lancet. Respiratory medicine  2014;2(3):214-225.
Background
The genetic risk factors for susceptibility to chronic obstructive pulmonary disease (COPD) are still largely unknown. Additional genetic variants are likely to be identified by genome-wide association studies in larger cohorts or specific subgroups.
Methods
Genome-wide association analysis in COPDGene (non-Hispanic whites and African-Americans) was combined with existing data from the ECLIPSE, NETT/NAS, and GenKOLS (Norway) studies. Analyses were performed both using all moderate-to-severe cases and the subset of severe cases. Top loci not previously described as genome-wide significant were genotyped in the ICGN study, and results combined in a joint meta-analysis.
Findings
Analysis of a total of 6,633 moderate-to-severe cases and 5,704 controls confirmed association at three known loci: CHRNA3/CHRNA5/IREB2, FAM13A, and HHIP (10−12 < P < 10−14), and also showed significant evidence of association at a novel locus near RIN3 (overall P, including ICGN = 5•4×10−9). In the severe COPD analysis (n=3,497), the effects at two of three previously described loci were significantly stronger; we also identified two additional loci previously reported to affect gene expression of MMP12 and TGFB2 (overall P = 2•6x10−9 and 8•3×10−9). RIN3 and TGFB2 expression levels were reduced in a set of Lung Tissue Research Consortium COPD lung tissue samples compared with controls.
Interpretation
In a genome-wide study of COPD, we confirmed associations at three known loci and found additional genome-wide significant associations with moderate-to-severe COPD near RIN3 and with severe COPD near MMP12 and TGFB2. Genetic variants, apart from alpha-1 antitrypsin deficiency, increase the risk of COPD. Our analysis of severe COPD suggests additional genetic variants may be identified by focusing on this subgroup.
Funding
National Heart, Lung, and Blood Institute; the COPD Foundation through contributions from AstraZeneca, Boehringer Ingelheim, Novartis, and Sepracor; GlaxoSmithKline; Centers for Medicare and Medicaid Services; Agency for Healthcare Research and Quality; US Department of Veterans Affairs.
doi:10.1016/S2213-2600(14)70002-5
PMCID: PMC4176924  PMID: 24621683
19.  Racial Differences in CT Phenotypes in COPD 
COPD  2013;10(1):20-27.
Background
Whether African Americans (AA) are more susceptible to COPD than non-Hispanic Whites (NHW) and whether racial differences in disease phenotype exist is controversial. The objective is to determine racial differences in the extent of emphysema and airway remodeling in COPD.
Methods
First, 2,500 subjects enrolled in the COPDGene study were used to evaluate racial differences in quantitative CT (QCT) parameters of % emphysema, air trapping and airway wall thickness. Independent variables studied included race, age, gender, education, BMI, pack-years, smoking status, age at smoking initiation, asthma, previous work in dusty job, CT scanner and center of recruitment.
Results
Of the 1,063 subjects with GOLD Stage II-IV COPD, 200 self-reported as AA. AAs had a lower mean % emphysema (13.1 % vs. 16.1%, p = 0.005) than NHW and proportionately less emphysema in the lower lung zones. After adjustment for covariates, there was no statistical difference by race in air trapping or airway wall thickness. Measured QCT parameters were more predictive of poor functional status in NHWs compared to AAs.
Conclusions
AAs have less emphysema than NHWs but the same degree of airway disease. Additional factors not easily assessed by current QCT techniques may account for the poor functional status in AAs.
doi:10.3109/15412555.2012.727921
PMCID: PMC4321889  PMID: 23413893
Airway wall thickness; Air trapping; Chronic obstructive pulmonary disease; Emphysema; Quantitative CT; Race
20.  Characterising the association of latency with α1-antitrypsin polymerisation using a novel monoclonal antibody 
α1-Antitrypsin is primarily synthesised in the liver, circulates to the lung and protects pulmonary tissues from proteolytic damage. The Z mutant (Glu342Lys) undergoes inactivating conformational change and polymerises. Polymers are retained within the hepatocyte endoplasmic reticulum (ER) in homozygous (PiZZ) individuals, predisposing the individuals to hepatic cirrhosis and emphysema. Latency is an analogous process of inactivating, intra-molecular conformational change and may co-occur with polymerisation. However, the relationship between latency and polymerisation remained unexplored in the absence of a suitable probe. We have developed a novel monoclonal antibody specific for latent α1-antitrypsin and used it in combination with a polymer-specific antibody, to assess the association of both conformers in vitro, in disease and during augmentation therapy. In vitro kinetics analysis showed polymerisation dominated the pathway but latency could be promoted by stabilising monomeric α1-antitrypsin. Polymers were extensively produced in hepatocytes and a cell line expressing Z α1-antitrypsin but the latent protein was not detected despite manipulation of the secretory pathway. However, α1-antitrypsin augmentation therapy contains latent α1-antitrypsin, as did the plasma of 63/274 PiZZ individuals treated with augmentation therapy but 0/264 who were not receiving this medication (p < 10−14). We conclude that latent α1-antitrypsin is a by-product of the polymerisation pathway, that the intracellular folding environment is resistant to formation of the latent conformer but that augmentation therapy introduces latent α1-antitrypsin into the circulation. A suite of monoclonal antibodies and methodologies developed in this study can characterise α1-antitrypsin folding and conformational transitions, and screen methods to improve augmentation therapy.
doi:10.1016/j.biocel.2014.11.005
PMCID: PMC4305080  PMID: 25462157
α1-Antitrypsin; Latency; Polymerisation; Monoclonal antibodies; Augmentation therapy
21.  A Simplified Score to Quantify Comorbidity in COPD 
PLoS ONE  2014;9(12):e114438.
Importance
Comorbidities are common in COPD, but quantifying their burden is difficult. Currently there is a COPD-specific comorbidity index to predict mortality and another to predict general quality of life. We sought to develop and validate a COPD-specific comorbidity score that reflects comorbidity burden on patient-centered outcomes.
Materials and Methods
Using the COPDGene study (GOLD II-IV COPD), we developed comorbidity scores to describe patient-centered outcomes employing three techniques: 1) simple count, 2) weighted score, and 3) weighted score based upon statistical selection procedure. We tested associations, area under the Curve (AUC) and calibration statistics to validate scores internally with outcomes of respiratory disease-specific quality of life (St. George's Respiratory Questionnaire, SGRQ), six minute walk distance (6MWD), modified Medical Research Council (mMRC) dyspnea score and exacerbation risk, ultimately choosing one score for external validation in SPIROMICS.
Results
Associations between comorbidities and all outcomes were comparable across the three scores. All scores added predictive ability to models including age, gender, race, current smoking status, pack-years smoked and FEV1 (p<0.001 for all comparisons). Area under the curve (AUC) was similar between all three scores across outcomes: SGRQ (range 0·7624–0·7676), MMRC (0·7590–0·7644), 6MWD (0·7531–0·7560) and exacerbation risk (0·6831–0·6919). Because of similar performance, the comorbidity count was used for external validation. In the SPIROMICS cohort, the comorbidity count performed well to predict SGRQ (AUC 0·7891), MMRC (AUC 0·7611), 6MWD (AUC 0·7086), and exacerbation risk (AUC 0·7341).
Conclusions
Quantifying comorbidity provides a more thorough understanding of the risk for patient-centered outcomes in COPD. A comorbidity count performs well to quantify comorbidity in a diverse population with COPD.
doi:10.1371/journal.pone.0114438
PMCID: PMC4267736  PMID: 25514500
22.  Sexually-dimorphic targeting of functionally-related genes in COPD 
BMC Systems Biology  2014;8:118.
Background
There is growing evidence that many diseases develop, progress, and respond to therapy differently in men and women. This variability may manifest as a result of sex-specific structures in gene regulatory networks that influence how those networks operate. However, there are few methods to identify and characterize differences in network structure, slowing progress in understanding mechanisms driving sexual dimorphism.
Results
Here we apply an integrative network inference method, PANDA (Passing Attributes between Networks for Data Assimilation), to model sex-specific networks in blood and sputum samples from subjects with Chronic Obstructive Pulmonary Disease (COPD). We used a jack-knifing approach to build an ensemble of likely networks for each sex. By adapting statistical methods to compare these network ensembles, we were able to identify strong differential-targeting patterns associated with functionally-related sets of genes, including those involved in mitochondrial function and energy metabolism. Network analysis also identified several potential sex- and disease-specific transcriptional regulators of these pathways.
Conclusions
Network analysis yielded insight into potential mechanisms driving sexual dimorphism in COPD that were not evident from gene expression analysis alone. We believe our ensemble approach to network analysis provides a principled way to capture sex-specific regulatory relationships and could be applied to identify differences in gene regulatory patterns in a wide variety of diseases and contexts.
Electronic supplementary material
The online version of this article (doi:10.1186/s12918-014-0118-y) contains supplementary material, which is available to authorized users.
doi:10.1186/s12918-014-0118-y
PMCID: PMC4269917  PMID: 25431000
Network modeling; Gene regulation; Regulatory networks; Sexual-dimorphism; Chronic Obstructive Lung Disease
23.  Non-emphysematous chronic obstructive pulmonary disease is associated with diabetes mellitus 
BMC Pulmonary Medicine  2014;14:164.
Background
Chronic obstructive pulmonary disease (COPD) has been classically divided into blue bloaters and pink puffers. The utility of these clinical subtypes is unclear. However, the broader distinction between airway-predominant and emphysema-predominant COPD may be clinically relevant. The objective was to define clinical features of emphysema-predominant and non-emphysematous COPD patients.
Methods
Current and former smokers from the Genetic Epidemiology of COPD Study (COPDGene) had chest computed tomography (CT) scans with quantitative image analysis. Emphysema-predominant COPD was defined by low attenuation area at -950 Hounsfield Units (LAA-950) ≥10%. Non-emphysematous COPD was defined by airflow obstruction with minimal to no emphysema (LAA-950 < 5%).
Results
Out of 4197 COPD subjects, 1687 were classified as emphysema-predominant and 1817 as non-emphysematous; 693 had LAA-950 between 5–10% and were not categorized. Subjects with emphysema-predominant COPD were older (65.6 vs 60.6 years, p < 0.0001) with more severe COPD based on airflow obstruction (FEV1 44.5 vs 68.4%, p < 0.0001), greater exercise limitation (6-minute walk distance 1138 vs 1331 ft, p < 0.0001) and reduced quality of life (St. George’s Respiratory Questionnaire score 43 vs 31, p < 0.0001). Self-reported diabetes was more frequent in non-emphysematous COPD (OR 2.13, p < 0.001), which was also confirmed using a strict definition of diabetes based on medication use. The association between diabetes and non-emphysematous COPD was replicated in the ECLIPSE study.
Conclusions
Non-emphysematous COPD, defined by airflow obstruction with a paucity of emphysema on chest CT scan, is associated with an increased risk of diabetes. COPD patients without emphysema may warrant closer monitoring for diabetes, hypertension, and hyperlipidemia and vice versa.
Trial registration
Clinicaltrials.gov identifiers: COPDGene NCT00608764, ECLIPSE NCT00292552.
Electronic supplementary material
The online version of this article (doi:10.1186/1471-2466-14-164) contains supplementary material, which is available to authorized users.
doi:10.1186/1471-2466-14-164
PMCID: PMC4216374  PMID: 25341556
Airway disease; CT scan; Diabetes mellitus; Emphysema; Spirometry
24.  Epidemiology, genetics, and subtyping of preserved ratio impaired spirometry (PRISm) in COPDGene 
Respiratory Research  2014;15(1):89.
Background
Preserved Ratio Impaired Spirometry (PRISm), defined as a reduced FEV1 in the setting of a preserved FEV1/FVC ratio, is highly prevalent and is associated with increased respiratory symptoms, systemic inflammation, and mortality. Studies investigating quantitative chest tomographic features, genetic associations, and subtypes in PRISm subjects have not been reported.
Methods
Data from current and former smokers enrolled in COPDGene (n = 10,192), an observational, cross-sectional study which recruited subjects aged 45–80 with ≥10 pack years of smoking, were analyzed. To identify epidemiological and radiographic predictors of PRISm, we performed univariate and multivariate analyses comparing PRISm subjects both to control subjects with normal spirometry and to subjects with COPD. To investigate common genetic predictors of PRISm, we performed a genome-wide association study (GWAS). To explore potential subgroups within PRISm, we performed unsupervised k-means clustering.
Results
The prevalence of PRISm in COPDGene is 12.3%. Increased dyspnea, reduced 6-minute walk distance, increased percent emphysema and decreased total lung capacity, as well as increased segmental bronchial wall area percentage were significant predictors (p-value <0.05) of PRISm status when compared to control subjects in multivariate models. Although no common genetic variants were identified on GWAS testing, a significant association with Klinefelter’s syndrome (47XXY) was observed (p-value < 0.001). Subgroups identified through k-means clustering include a putative “COPD-subtype”, “Restrictive-subtype”, and a highly symptomatic “Metabolic-subtype”.
Conclusions
PRISm subjects are clinically and genetically heterogeneous. Future investigations into the pathophysiological mechanisms behind and potential treatment options for subgroups within PRISm are warranted.
Trial registration
Clinicaltrials.gov Identifier: NCT000608764.
Electronic supplementary material
The online version of this article (doi:10.1186/s12931-014-0089-y) contains supplementary material, which is available to authorized users.
doi:10.1186/s12931-014-0089-y
PMCID: PMC4256936  PMID: 25096860
Spirometry; Restriction; Lung diseases; Smoking
25.  Systemic Steroid Exposure Is Associated with Differential Methylation in Chronic Obstructive Pulmonary Disease 
Rationale: Systemic glucocorticoids are used therapeutically to treat a variety of medical conditions. Epigenetic processes such as DNA methylation may reflect exposure to glucocorticoids and may be involved in mediating the responses and side effects associated with these medications.
Objectives: To test the hypothesis that differences in DNA methylation are associated with current systemic steroid use.
Methods: We obtained DNA methylation data at 27,578 CpG sites in 14,475 genes throughout the genome in two large, independent cohorts: the International COPD Genetics Network (ndiscovery = 1,085) and the Boston Early Onset COPD study (nreplication = 369). Sites were tested for association with current systemic steroid use using generalized linear mixed models.
Measurements and Main Results: A total of 511 sites demonstrated significant differential methylation by systemic corticosteroid use in all three of our primary models. Pyrosequencing validation confirmed robust differential methylation at CpG sites annotated to genes such as SLC22A18, LRP3, HIPK3, SCNN1A, FXYD1, IRF7, AZU1, SIT1, GPR97, ABHD16B, and RABGEF1. Functional annotation clustering demonstrated significant enrichment in intrinsic membrane components, hemostasis and coagulation, cellular ion homeostasis, leukocyte and lymphocyte activation and chemotaxis, protein transport, and responses to nutrients.
Conclusions: Our analyses suggest that systemic steroid use is associated with site-specific differential methylation throughout the genome. Differentially methylated CpG sites were found in biologically plausible and previously unsuspected pathways; these genes and pathways may be relevant in the development of novel targeted therapies.
doi:10.1164/rccm.201207-1280OC
PMCID: PMC3622442  PMID: 23065012
DNA methylation; glucocorticoids; chronic obstructive pulmonary disease

Results 1-25 (49)