PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-2 (2)
 

Clipboard (0)
None
Journals
Authors
more »
Year of Publication
Document Types
1.  Reduced Functional Integration and Segregation of Distributed Neural Systems Underlying Social and Emotional Information Processing in Autism Spectrum Disorders 
Cerebral Cortex (New York, NY)  2011;22(5):1025-1037.
A growing body of evidence suggests that autism spectrum disorders (ASDs) are related to altered communication between brain regions. Here, we present findings showing that ASD is characterized by a pattern of reduced functional integration as well as reduced segregation of large-scale brain networks. Twenty-three children with ASD and 25 typically developing matched controls underwent functional magnetic resonance imaging while passively viewing emotional face expressions. We examined whole-brain functional connectivity of two brain structures previously implicated in emotional face processing in autism: the amygdala bilaterally and the right pars opercularis of the inferior frontal gyrus (rIFGpo). In the ASD group, we observed reduced functional integration (i.e., less long-range connectivity) between amygdala and secondary visual areas, as well as reduced segregation between amygdala and dorsolateral prefrontal cortex. For the rIFGpo seed, we observed reduced functional integration with parietal cortex and increased integration with right frontal cortex as well as right nucleus accumbens. Finally, we observed reduced segregation between rIFGpo and the ventromedial prefrontal cortex. We propose that a systems-level approach—whereby the integration and segregation of large-scale brain networks in ASD is examined in relation to typical development—may provide a more detailed characterization of the neural basis of ASD.
doi:10.1093/cercor/bhr171
PMCID: PMC3328339  PMID: 21784971
amygdala; connectivity; default mode network; face processing; mirror neuron system
2.  Relationships between Brain Activation and Brain Structure in Normally Developing Children 
Cerebral Cortex (New York, NY)  2009;19(11):2595-2604.
Dynamic changes in brain structure, activation, and cognitive abilities co-occur during development, but little is known about how changes in brain structure relate to changes in cognitive function or brain activity. By using cortical pattern matching techniques to correlate cortical gray matter thickness and functional brain activity over the entire brain surface in 24 typically developing children, we integrated structural and functional magnetic resonance imaging data with cognitive test scores to identify correlates of mature performance during orthographic processing. Fast-naming individuals activated the right fronto-parietal attention network in response to novel fonts more than slow-naming individuals, and increased activation of this network was correlated with more mature brain morphology in the same fronto-parietal region. These relationships remained even after effects of age or general cognitive ability were statistically controlled. These results localized cortical regions where mature morphology corresponds to mature patterns of activation, and may suggest a role for experience in mediating brain structure–activation relationships.
doi:10.1093/cercor/bhp011
PMCID: PMC2758677  PMID: 19240138
attention; fMRI; imaging; language; morphometry

Results 1-2 (2)