Search tips
Search criteria

Results 1-9 (9)

Clipboard (0)
more »
Year of Publication
Document Types
1.  Race modulates neural activity during imitation 
NeuroImage  2011;59(4):3594-3603.
Imitation plays a central role in the acquisition of culture. People preferentially imitate others who are self-similar, prestigious or successful. Because race can indicate a person's self-similarity or status, race influences whom people imitate. Prior studies of the neural underpinnings of imitation have not considered the effects of race. Here we measured neural activity with fMRI while European American participants imitated meaningless gestures performed by actors of their own race, and two racial outgroups, African American, and Chinese American. Participants also passively observed the actions of these actors and their portraits. Frontal, parietal and occipital areas were differentially activated while participants imitated actors of different races. More activity was present when imitating African Americans than the other racial groups, perhaps reflecting participants' reported lack of experience with and negative attitudes towards this group, or the group's lower perceived social status. This pattern of neural activity was not found when participants passively observed the gestures of the actors or simply looked at their faces. Instead, during face-viewing neural responses were overall greater for own-race individuals, consistent with prior race perception studies not involving imitation. Our findings represent a first step in elucidating neural mechanisms involved in cultural learning, a process that influences almost every aspect of our lives but has thus far received little neuroscientific study.
PMCID: PMC3909702  PMID: 22062193
Race; Imitation; Mirror neuron system; Neuroimaging; Cultural learning
2.  Entering Adolescence: Resistance to Peer Influence, Risky Behavior, and Neural Changes in Emotion Reactivity 
Neuron  2011;69(5):10.1016/j.neuron.2011.02.019.
Adolescence is often described as a period of heightened reactivity to emotions paired with reduced regulatory capacities, a combination suggested to contribute to risk-taking and susceptibility to peer influence during puberty. However, no longitudinal research has definitively linked these behavioral changes to underlying neural development. Here, 38 neurotypical participants underwent two fMRI sessions across the transition from late childhood (10 years) to early adolescence (13 years). Responses to affective facial displays exhibited a combination of general and emotion-specific changes in ventral striatum (VS), ventromedial PFC, amygdala, and temporal pole. Furthermore, VS activity increases correlated with decreases in susceptibility to peer influence and risky behavior. VS and amygdala responses were also significantly more negatively coupled in early adolescence than in late childhood while processing sad and happy versus neutral faces. Together, these results suggest that VS responses to viewing emotions may play a regulatory role that is critical to adolescent interpersonal functioning.
PMCID: PMC3840168  PMID: 21382560
3.  Mirroring others’ emotions relates to empathy and interpersonal competence in children 
NeuroImage  2007;39(4):10.1016/j.neuroimage.2007.10.032.
The mirror neuron system (MNS) has been proposed to play an important role in social cognition by providing a neural mechanism by which others’ actions, intentions, and emotions can be understood. Here functional magnetic resonance imaging was used to directly examine the relationship between MNS activity and two distinct indicators of social functioning in typically-developing children (aged 10.1 years±7 months): empathy and interpersonal competence. Reliable activity in pars opercularis, the frontal component of the MNS, was elicited by observation and imitation of emotional expressions. Importantly, activity in this region (as well as in the anterior insula and amygdala) was significantly and positively correlated with established behavioral measures indexing children’s empathic behavior (during both imitation and observation) and interpersonal skills (during imitation only). These findings suggest that simulation mechanisms and the MNS may indeed be relevant to social functioning in everyday life during typical human development.
PMCID: PMC3840169  PMID: 18082427
4.  Understanding emotions in others: mirror neuron dysfunction in children with autism spectrum disorders 
Nature neuroscience  2005;9(1):28-30.
To examine mirror neuron abnormalities in autism, high-functioning children with autism and matched controls underwent fMRI while imitating and observing emotional expressions. Although both groups performed the tasks equally well, children with autism showed no mirror neuron activity in the inferior frontal gyrus (pars opercularis). Notably, activity in this area was inversely related to symptom severity in the social domain, suggesting that a dysfunctional ‘mirror neuron system’ may underlie the social deficits observed in autism.
PMCID: PMC3713227  PMID: 16327784
5.  Reduced Functional Integration and Segregation of Distributed Neural Systems Underlying Social and Emotional Information Processing in Autism Spectrum Disorders 
Cerebral Cortex (New York, NY)  2011;22(5):1025-1037.
A growing body of evidence suggests that autism spectrum disorders (ASDs) are related to altered communication between brain regions. Here, we present findings showing that ASD is characterized by a pattern of reduced functional integration as well as reduced segregation of large-scale brain networks. Twenty-three children with ASD and 25 typically developing matched controls underwent functional magnetic resonance imaging while passively viewing emotional face expressions. We examined whole-brain functional connectivity of two brain structures previously implicated in emotional face processing in autism: the amygdala bilaterally and the right pars opercularis of the inferior frontal gyrus (rIFGpo). In the ASD group, we observed reduced functional integration (i.e., less long-range connectivity) between amygdala and secondary visual areas, as well as reduced segregation between amygdala and dorsolateral prefrontal cortex. For the rIFGpo seed, we observed reduced functional integration with parietal cortex and increased integration with right frontal cortex as well as right nucleus accumbens. Finally, we observed reduced segregation between rIFGpo and the ventromedial prefrontal cortex. We propose that a systems-level approach—whereby the integration and segregation of large-scale brain networks in ASD is examined in relation to typical development—may provide a more detailed characterization of the neural basis of ASD.
PMCID: PMC3328339  PMID: 21784971
amygdala; connectivity; default mode network; face processing; mirror neuron system
6.  Facing puberty: associations between pubertal development and neural responses to affective facial displays 
Adolescence is marked by profound psychosocial and physiological changes. Although investigations into the interactions between these forces have begun to shed light on the neural correlates of affective processing during the transition to adolescence, relatively little is known about the relationship between pubertal development and emotion perception at the neural level. In the current longitudinal study, 45 neurotypical participants were shown affective facial displays while undergoing fMRI, at ages 10 and 13. Neural responses to emotional expressions at both time points were then correlated with a self-report measure of pubertal development, revealing positive associations with activity in amygdala, thalamus and visual cortical areas at age 10 that increased in magnitude and extent by age 13. At the latter time point, pubertal development was additionally correlated with enhanced responses to faces in temporal pole, ventrolateral prefrontal cortex (PFC) and dorsomedial PFC. Longitudinal comparisons revealed that the relationships between pubertal development and activity in the amygdala, hippocampus and temporal pole were significantly stronger during early adolescence than late childhood. These results suggest that pubertal development per se is linked to neural processing of socioemotional stimuli, particularly with respect to the integration of complex perceptual input and higher order cortical processing of affective content.
PMCID: PMC3252633  PMID: 22228752
adolescence; puberty; emotion; fMRI; amygdala; longitudinal
7.  Atypical Neural Networks for Social Orienting in Autism Spectrum Disorders 
NeuroImage  2011;56(1):354-362.
Autism spectrum disorders (ASD) are characterized by significant social impairments, including deficits in orienting attention following social cues. Behavioral studies investigating social orienting in ASD, however, have yielded mixed results, as the use of naturalistic paradigms typically reveals clear deficits whereas computerized laboratory experiments often report normative behavior. The present study is the first to examine the neural mechanisms underlying social orienting in ASD in order to provide new insight into the social attention impairments that characterize this disorder. Using fMRI, we examined the neural correlates of social orienting in children and adolescents with ASD and in a matched sample of typically developing (TD) controls while they performed a spatial cueing paradigm with social (eye gaze) and nonsocial (arrow) cues. Cues were either directional (indicating left or right) or neutral (indicating no direction), and directional cues were uninformative of the upcoming target location in order to engage automatic processes by minimizing expectations. Behavioral results demonstrated intact orienting effects for social and nonsocial cues, with no differences between groups. The imaging results, however, revealed clear group differences in brain activity. When attention was directed by social cues compared to nonsocial cues, the TD group showed increased activity in frontoparietal attention networks, visual processing regions, and the striatum, whereas the ASD group only showed increased activity in the superior parietal lobule. Significant group × cue type interactions confirmed greater responsivity in task-relevant networks for social cues than nonsocial cues in TD as compared to ASD, despite similar behavioral performance. These results indicate that, in the autistic brain, social cues are not assigned the same privileged status as they are in the typically developing brain. These findings provide the first empirical evidence that the neural circuitry involved in social orienting is disrupted in ASD and highlight that normative behavioral performance in a laboratory setting may reflect compensatory mechanisms rather than intact social attention.
PMCID: PMC3091391  PMID: 21334443
autism; attention; functional magnetic resonance imaging; gaze; social cue
8.  Culture and neuroscience: additive or synergistic? 
The investigation of cultural phenomena using neuroscientific methods—cultural neuroscience (CN)—is receiving increasing attention. Yet it is unclear whether the integration of cultural study and neuroscience is merely additive, providing additional evidence of neural plasticity in the human brain, or truly synergistic, yielding discoveries that neither discipline could have achieved alone. We discuss how the parent fields to CN: cross-cultural psychology, psychological anthropology and cognitive neuroscience inform the investigation of the role of cultural experience in shaping the brain. Drawing on well-established methodologies from cross-cultural psychology and cognitive neuroscience, we outline a set of guidelines for CN, evaluate 17 CN studies in terms of these guidelines, and provide a summary table of our results. We conclude that the combination of culture and neuroscience is both additive and synergistic; while some CN methodologies and findings will represent the direct union of information from parent fields, CN studies employing the methodological rigor required by this logistically challenging new field have the potential to transform existing methodologies and produce unique findings.
PMCID: PMC2894662  PMID: 20083533
cross-cultural; cross disciplinary; cultural-neuroscience; culture; neuroscience; neuroimaging
9.  Neural Basis of Self and Other Representation in Autism: An fMRI Study of Self-Face Recognition 
PLoS ONE  2008;3(10):e3526.
Autism is a developmental disorder characterized by decreased interest and engagement in social interactions and by enhanced self-focus. While previous theoretical approaches to understanding autism have emphasized social impairments and altered interpersonal interactions, there is a recent shift towards understanding the nature of the representation of the self in individuals with autism spectrum disorders (ASD). Still, the neural mechanisms subserving self-representations in ASD are relatively unexplored.
Methodology/Principal Findings
We used event-related fMRI to investigate brain responsiveness to images of the subjects' own face and to faces of others. Children with ASD and typically developing (TD) children viewed randomly presented digital morphs between their own face and a gender-matched other face, and made “self/other” judgments. Both groups of children activated a right premotor/prefrontal system when identifying images containing a greater percentage of the self face. However, while TD children showed activation of this system during both self- and other-processing, children with ASD only recruited this system while viewing images containing mostly their own face.
This functional dissociation between the representation of self versus others points to a potential neural substrate for the characteristic self-focus and decreased social understanding exhibited by these individuals, and suggests that individuals with ASD lack the shared neural representations for self and others that TD children and adults possess and may use to understand others.
PMCID: PMC2568959  PMID: 18958161

Results 1-9 (9)