PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-3 (3)
 

Clipboard (0)
None
Journals
Authors
more »
Year of Publication
Document Types
1.  Treatment of Obesity in Underserved Rural Settings (TOURS): A Randomized Trial of Extended-Care Programs for Weight Management 
Archives of internal medicine  2008;168(21):2347-2354.
Context
Rural counties in the U.S. have higher rates of obesity, sedentary lifestyle, and associated chronic diseases than non-rural areas, yet the management of obesity in rural communities has received little attention from researchers.
Objective
To compare 2 extended-care programs for weight management with an education control group.
Design, Setting, and Participants
234 obese women from rural communities who completed an initial 6-month weight-loss program were randomized to extended-care, delivered via telephone counseling or face-to-face sessions, or to an education control group. Cooperative Extension Service offices in six medically underserved rural counties served as venues for the trial. The study was conducted from June 2003 to May 2007.
Interventions
The extended-care programs entailed problem-solving counseling delivered in 26 biweekly sessions. Control group participants received 26 biweekly newsletters containing weight-control advice.
Main Outcome Measure
Change in weight from randomization.
Results
Mean weight at study entry was 96.4 kg. Mean weight loss during the initial 6-month intervention was 10.0 kg. One year after randomization, participants in the telephone and face-to-face conditions regained less weight (means ± SE = 1.3 ± 0.7 and 1.2 ± 0.6 kg, respectively) than those in the education control group (3.7 ± 0.6 kg; Ps = 0.02 and 0.03). The beneficial effects of extended-care counseling were mediated by greater adherence to behavioral weight-management strategies, and cost analyses indicated that telephone counseling was less expensive than face-to-face intervention.
Conclusion
Extended care delivered either by telephone or face-to-face sessions improved the one-year maintenance of lost weight compared to education alone. Telephone counseling constitutes an effective and cost-efficient option for long-term weight management. Delivering lifestyle interventions via the existing infrastructure of the Cooperative Extension Service represents a viable means of research translation into rural communities with limited access to preventive health services.
Trial Registration
ClinicalTrials.gov number, NCT00201006.
doi:10.1001/archinte.168.21.2347
PMCID: PMC3772658  PMID: 19029500
2.  A Flexible Approach to Bayesian Multiple Curve Fitting 
Summary
We model sparse functional data from multiple subjects with a mixed-effects regression spline. In this model, the expected values for any subject (conditioned on the random effects) can be written as the sum of a population curve and a subject-specific deviate from this population curve. The population curve and the subject-specific deviates are both modeled as free-knot b-splines with k and k′ knots located at tk and tk′, respectively. To identify the number and location of the “free” knots, we sample from the posterior p (k, tk, k′, tk′|y) using reversible jump MCMC methods. Sampling from this posterior distribution is complicated, however, by the flexibility we allow for the model’s covariance structure. No restrictions (other than positive definiteness) are placed on the covariance parameters ψ and σ2 and, as a result, no analytical form for the likelihood p (y|k, tk, k′, tk′) exists. In this paper, we consider two approximations to p(y|k, tk, k′, tk′) and then sample from the corresponding approximations to p(k, tk, k′, tk′|y). We also sample from p(k, tk, k′, tk′, ψ, σ2|y) which has a likelihood that is available in closed form. While sampling from this larger posterior is less efficient, the resulting marginal distribution of knots is exact and allows us to evaluate the accuracy of each approximation. We then consider a real data set and explore the difference between p(k, tk, k′, tk′, ψ, σ2|y) and the more accurate approximation to p(k, tk, k′, tk′|y).
doi:10.1016/j.csda.2008.05.008
PMCID: PMC2994020  PMID: 21127724
B-splines; Laplace approximation; Reversible jump MCMC; Unit-information prior
3.  Marginalized models for longitudinal ordinal data with application to quality of life studies 
Statistics in medicine  2008;27(21):4359-4380.
SUMMARY
Random effects are often used in generalized linear models to explain the serial dependence for longitudinal categorical data. Marginalized random effects models (MREMs) for the analysis of longitudinal binary data have been proposed to permit likelihood-based estimation of marginal regression parameters. In this paper, we introduce an extension of the MREM to accommodate longitudinal ordinal data. Maximum marginal likelihood estimation is implemented utilizing quasi-Newton algorithms with Monte Carlo integration of the random effects. Our approach is applied to analyze the quality of life data from a recent colorectal cancer clinical trial. Dropout occurs at a high rate and is often due to tumor progression or death. To deal with progression/death, we use a mixture model for the joint distribution of longitudinal measures and progression/death times and principal stratification to draw causal inferences about survivors.
doi:10.1002/sim.3352
PMCID: PMC2858760  PMID: 18613246
marginalized likelihood-based models; ordinal data models; dropout

Results 1-3 (3)