PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-2 (2)
 

Clipboard (0)
None
Journals
Authors
more »
Year of Publication
Document Types
1.  Effect of Dietary Restriction and Exercise on Lower Extremity Tissue Compartments in Obese, Older Women: A Pilot Study 
Background.
Accumulating evidence suggests that both dietary restriction and exercise (DR + E) should be incorporated in weight loss interventions to treat obese, older adults. However, more information is needed on the effects to lower extremity tissue composition—an important consideration for preserving mobility in older adults.
Methods.
Twenty-seven sedentary women (body mass index: 36.3±5.4kg/m2; age: 63.6±5.6 yrs) were randomly assigned to 6 months of DR + E or a health education control group. Thigh and calf muscle, subcutaneous adipose tissue (SAT), and intermuscular adipose tissue (IMAT) size were determined using magnetic resonance imaging. Physical function was measured using a long-distance corridor walk and knee extension strength.
Results.
Compared with control, DR + E significantly reduced body mass (-6.6±3.7kg vs control: -0.05±3.5kg; p < .01). Thigh and calf muscle volumes responded similarly between groups. Within the DR + E group, adipose tissue was reduced more in the thigh than in the calf (p < .04). Knee extension strength was unaltered by DR + E, but a trend toward increased walking speed was observed in the DR + E group (p = .09). Post hoc analyses showed that reductions in SAT and IMAT within the calf, but not the thigh, were associated with faster walking speed achieved with DR + E (SAT: r = -0.62; p = .01; IMAT: r = -0.62; p = .01).
Conclusions.
DR + E preserved lower extremity muscle size and function and reduced regional lower extremity adipose tissue. Although the magnitude of reduction in adipose tissue was greater in the thigh than the calf region, post hoc analyses demonstrated that reductions in calf SAT and IMAT were associated with positive adaptations in physical function.
doi:10.1093/gerona/gls337
PMCID: PMC4158399  PMID: 23682155
Body composition; Weight loss; Obesity; Aging; Disability.
2.  An Exploratory Analysis of the Effects of a Weight Loss Plus Exercise Program on Cellular Quality Control Mechanisms in Older Overweight Women 
Rejuvenation Research  2011;14(3):315-324.
Abstract
Obese older adults are particularly susceptible to sarcopenia and have a higher prevalence of disability than their peers of normal weight. Interventions to improve body composition in late life are crucial to maintaining independence. The main mechanisms underlying sarcopenia have not been determined conclusively, but chronic inflammation, apoptosis, and impaired mitochondrial function are believed to play important roles. It has yet to be determined whether impaired cellular quality control mechanisms contribute to this process. The objective of this study was to assess the effects of a 6-month weight loss program combined with moderate-intensity exercise on the cellular quality control mechanisms autophagy and ubiquitin-proteasome, as well as on inflammation, apoptosis, and mitochondrial function, in the skeletal muscle of older obese women. The intervention resulted in significant weight loss (8.0 ± 3.9 % vs. 0.4 ± 3.1% of baseline weight, p = 0.002) and improvements in walking speed (reduced time to walk 400 meters, − 20.4 ± 16% vs. − 2.5 ± 12%, p = 0.03). In the intervention group, we observed a three-fold increase in messenger RNA (mRNA) levels of the autophagy regulators LC3B, Atg7, and lysosome-associated membrane protein-2 (LAMP-2) compared to controls. Changes in mRNA levels of FoxO3A and its targets MuRF1, MAFBx, and BNIP3 were on average seven-fold higher in the intervention group compared to controls, but these differences were not statistically significant. Tumor necrosis factor-α (TNF-α) mRNA levels were elevated after the intervention, but we did not detect significant changes in the downstream apoptosis markers caspase 8 and 3. Mitochondrial biogenesis markers (PGC1α and TFAm) were increased by the intervention, but this was not accompanied by significant changes in mitochondrial complex content and activity. In conclusion, although exploratory in nature, this study is among the first to report the stimulation of cellular quality control mechanisms elicited by a weight loss and exercise program in older obese women.
doi:10.1089/rej.2010.1132
PMCID: PMC3136739  PMID: 21631380

Results 1-2 (2)