PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-7 (7)
 

Clipboard (0)
None
Journals
Authors
more »
Year of Publication
Document Types
author:("Cui, shengmui")
1.  Differential Gene Expression by RamA in Ciprofloxacin-Resistant Salmonella Typhimurium 
PLoS ONE  2011;6(7):e22161.
Overexpression of ramA has been implicated in resistance to multiple drugs in several enterobacterial pathogens. In the present study, Salmonella Typhimurium strain LTL with constitutive expression of ramA was compared to its ramA-deletion mutant by employing both DNA microarrays and phenotype microarrays (PM). The mutant strain with the disruption of ramA showed differential expression of at least 33 genes involved in 11 functional groups. The study confirmed at the transcriptional level that the constitutive expression of ramA was directly associated with increased expression of multidrug efflux pump AcrAB-TolC and decreased expression of porin protein OmpF, thereby conferring multiple drug resistance phenotype. Compared to the parent strain constitutively expressing ramA, the ramA mutant had increased susceptibility to over 70 antimicrobials and toxic compounds. The PM analysis also uncovered that the ramA mutant was better in utilization of 10 carbon sources and 5 phosphorus sources. This study suggested that the constitutive expression of ramA locus regulate not only multidrug efflux pump and accessory genes but also genes involved in carbon metabolic pathways.
doi:10.1371/journal.pone.0022161
PMCID: PMC3139621  PMID: 21811569
2.  Effect of Vaccination on Bordetella pertussis Strains, China 
Emerging Infectious Diseases  2010;16(11):1695-1701.
Strains in China may differ from those in countries that have long histories of high vaccination coverage.
Whole-cell pertussis vaccine was introduced in China in the early 1960s. We used standard typing methods to compare 96 Bordetella pertussis isolates collected before and after introduction of vaccination, during 1953–2005. The following vaccine-type alleles of the pertussis toxin (ptx) gene were characteristic for all prevaccination strains: ptxA2, ptxA3, and ptxA4. The shift to ptxA1 occurred since 1963. All isolates collected since 1983 contained ptxA1. Pertactin (prn) allele 1, prn1, was predominant, although prn2 and prn3 have been detected since 2000. Serotypes fimbriae (Fim) 2 and Fim2,3 were found in all isolates collected before 1986. During 1997–2005, Fim3 became prevalent. Although changes in electrophoresis profiles over time were observed, the predominant profiles during 1997–2005 resembled those during the prevaccine era and those found in Europe before the 1990s. B. pertussis strains in China may differ from those in countries that have a long history of high vaccine coverage.
doi:10.3201/eid1611.100401
PMCID: PMC3294513  PMID: 21029526
China; Bordetella pertussis; whooping cough; pertussis; incidence; vaccination; genotyping; PFGE; bacteria; research
3.  Identification and Characterization of Shiga Toxin Type 2 Variants in Escherichia coli Isolates from Animals, Food, and Humans▿  
Applied and Environmental Microbiology  2008;74(18):5645-5652.
There is considerable heterogeneity among the Shiga toxin type 2 (Stx2) toxins elaborated by Shiga toxin-producing Escherichia coli (STEC). One such Stx2 variant, the Stx2d mucus-activatable toxin (Stx2dact), is rendered more toxic by the action of elastase present in intestinal mucus, which cleaves the last two amino acids of the A2 portion of the toxin A subunit. We screened 153 STEC isolates from food, animals, and humans for the gene encoding Stx2dact by using a novel one-step PCR procedure. This method targeted the region of stx2dact that encodes the elastase recognition site. The presence of stx2dact was confirmed by DNA sequencing of the complete toxin genes. Seven STEC isolates from cows (four isolates), meat (two isolates), and a human (one isolate) that carried the putative stx2dact gene were identified; all were eae negative, and none was the O157:H7 serotype. Three of the isolates (CVM9322, CVM9557, and CVM9584) also carried stx1, two (P1332 and P1334) carried stx1 and stx2c, and one (CL-15) carried stx2c. One isolate, P1130, harbored only stx2dact. The Vero cell cytotoxicities of supernatants from P1130 and stx1 deletion mutants of CVM9322, CVM9557, and CVM9584 were increased 13- to 30-fold after treatment with porcine elastase. Thus, Stx2dact-producing strains, as detected by our one-step PCR method, can be isolated not only from humans, as previously documented, but also from food and animals. The latter finding has important public health implications based on a recent report from Europe of a link between disease severity and infection with STEC isolates that produce Stx2dact.
doi:10.1128/AEM.00503-08
PMCID: PMC2547040  PMID: 18658282
4.  Contribution of Target Gene Mutations and Efflux to Decreased Susceptibility of Salmonella enterica Serovar Typhimurium to Fluoroquinolones and Other Antimicrobials▿  
The mechanisms involved in fluoroquinolone resistance in Salmonella enterica include target alterations and overexpression of efflux pumps. The present study evaluated the role of known and putative multidrug resistance efflux pumps and mutations in topoisomerase genes among laboratory-selected and naturally occurring fluoroquinolone-resistant Salmonella enterica serovar Typhimurium strains. Strains with ciprofloxacin MICs of 0.25, 4, 32, and 256 μg/ml were derived in vitro using serovar Typhimurium S21. These mutants also showed decreased susceptibility or resistance to many nonfluoroquinolone antimicrobials, including tetracycline, chloramphenicol, and several β-lactams. The expression of efflux pump genes acrA, acrB, acrE, acrF, emrB, emrD, and mdlB were substantially increased (≥2-fold) among the fluoroquinolone-resistant mutants. Increased expression was also observed, but to a lesser extent, with three other putative efflux pumps: mdtB (yegN), mdtC (yegO), and emrA among mutants with ciprofloxacin MICs of ≥32 μg/ml. Deletion of acrAB or tolC in S21 and its fluoroquinolone-resistant mutants resulted in increased susceptibility to fluoroquinolones and other tested antimicrobials. In naturally occurring fluoroquinolone-resistant serovar Typhimurium strains, deletion of acrAB or tolC increased fluoroquinolone susceptibility 4-fold, whereas replacement of gyrA double mutations (S83F D87N) with wild-type gyrA increased susceptibility >500-fold. These results indicate that a combination of topoisomerase gene mutations, as well as enhanced antimicrobial efflux, plays a critical role in the development of fluoroquinolone resistance in both laboratory-derived and naturally occurring quinolone-resistant serovar Typhimurium strains.
doi:10.1128/AAC.00600-06
PMCID: PMC1797773  PMID: 17043131
5.  Use of Ramification Amplification Assay for Detection of Escherichia coli O157:H7 and Other E. coli Shiga Toxin-Producing Strains 
Journal of Clinical Microbiology  2005;43(12):6086-6090.
Escherichia coli O157:H7 and other Shiga toxin-producing E. coli (STEC) strains are important human pathogens that are mainly transmitted through the food chain. These pathogens have a low infectious dose and may cause life-threatening illnesses. However, detection of this microorganism in contaminated food or a patient's stool specimens presents a diagnostic challenge because of the low copy number in the sample. Often, a more sensitive nucleic acid amplification method, such as PCR, is required for rapid detection of this microorganism. Ramification amplification (RAM) is a recently introduced isothermal DNA amplification technique that utilizes a circular probe for target detection and achieves exponential amplification through the mechanism of primer extension, strand displacement, and ramification. In this study, we synthesized a circular probe specific for the Shiga toxin 2 gene (stx2). Our results showed that as few as 10 copies of stx2 could be detected, indicating that the RAM assay was as sensitive as conventional PCR. We further tested 33 isolates of E coli O157:H7, STEC, Shigella dysenteriae, and nonpathogenic E. coli by RAM assay. Results showed that all 27 STEC isolates containing the stx2 gene were identified by RAM assay, while S. dysenteriae and nonpathogenic E. coli isolates were undetected. The RAM results were 100% in concordance with those of PCR. Because of its simplicity and isothermal amplification, the RAM assay could be a useful method for detecting STEC in food and human specimens.
doi:10.1128/JCM.43.12.6086-6090.2005
PMCID: PMC1317159  PMID: 16333102
6.  Prevalence and Antimicrobial Resistance of Campylobacter spp. and Salmonella Serovars in Organic Chickens from Maryland Retail Stores 
Retail organic (n = 198) and conventional (n = 61) chickens were analyzed. Most organic (76%) and conventional (74%) chickens were contaminated with campylobacters. Salmonellae were recovered from 61% of organic and 44% of conventional chickens. All Salmonella enterica serovar Typhimurium isolates from conventional chickens were resistant to five or more antimicrobials, whereas most S. enterica serovar Typhimurium isolates (79%) from organic chickens were susceptible to 17 antimicrobials tested.
doi:10.1128/AEM.71.7.4108-4111.2005
PMCID: PMC1169031  PMID: 16000828
7.  Availability of Glutamate and Arginine during Acid Challenge Determines Cell Density-Dependent Survival Phenotype of Escherichia coli Strains 
Applied and Environmental Microbiology  2001;67(10):4914-4918.
The cell density-dependent acid sensitivity phenotypes of Escherichia coli strains K-12 and O157:H7 were examined with reference to three possible mechanisms of acid resistance. There was no evidence of any diffusible substance released from dead cells which could influence the cell density-dependent acid survival phenotype. Instead, cell density-dependent acid survival phenotype was associated with induction of glutamate- and arginine-decarboxylase acid survival pathways and concomitant availability of glutamate and arginine during acid challenge.
doi:10.1128/AEM.67.10.4914-4918.2001
PMCID: PMC93249  PMID: 11571202

Results 1-7 (7)